| 1 |
SHI L, SONG J Q, GAO Y F, et al. YOLO-GFD: a fast and accurate fabric defect detection model[C]//Proceedings of the 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). Washington D.C., USA: IEEE Press, 2023: 229-233.
|
| 2 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Washington D.C., USA: IEEE Press, 2005: 886-893.
|
| 3 |
LI S , LI S G , XIE M X , et al. End-to-end transferable anomaly detection via multi-spectral cross-domain representation alignment. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (12): 12194- 12207.
doi: 10.1109/TKDE.2021.3118111
|
| 4 |
TORRALBA A, EFROS A A. Unbiased look at dataset bias[C]//Proceedings of the CVPR 2011. Washington D.C., USA: IEEE Press, 2011: 1521-1528.
|
| 5 |
PAN S J , YANG Q . A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22 (10): 1345- 1359.
doi: 10.1109/TKDE.2009.191
|
| 6 |
CHEN Y H, LI W, SAKARIDIS C, et al. Domain adaptive Faster R-CNN for object detection in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 3339-3348.
|
| 7 |
HE M Z, WANG Y L, WU J X, et al. Cross domain object detection by target-perceived dual branch distillation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 9560-9570.
|
| 8 |
INOUE N, FURUTA R, YAMASAKI T, et al. Cross-domain weakly-supervised object detection through progressive domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 5001-5009.
|
| 9 |
JIANG J, CHEN B, WANG J, et al. Decoupled adaptation for cross-domain object detection[C]//Proceedings of the International Conference on Learning Representations. Washington D.C., USA: IEEE Press, 2022: 15-22.
|
| 10 |
RASHEED A , ZAFAR B , RASHEED A , et al. Fabric defect detection using computer vision techniques: a comprehensive review. Mathematical Problems in Engineering, 2020, 2020, 8189403.
|
| 11 |
JIANG L M, DAI B, WU W, et al. Focal frequency loss for image reconstruction and synthesis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 13899-13909.
|
| 12 |
XU Z J , ZHOU H X . Deep frequency principle towards understanding why deeper learning is faster. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (12): 10541- 10550.
doi: 10.1609/aaai.v35i12.17261
|
| 13 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6154-6162.
|
| 14 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2980-2988.
|
| 15 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 936-944.
|
| 16 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
| 17 |
方康, 黄琴, 王克琪, 等. 基于改进YOLOX的多光谱行人检测算法. 小型微型计算机系统, 2024, 45 (1): 185- 191.
|
|
FANG K , HUANG Q , WANG K Q , et al. Multispectral pedestrian detection based on improved YOLOX. Journal of Chinese Computer Systems, 2024, 45 (1): 185- 191.
|
| 18 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2999-3007.
|
| 19 |
|
| 20 |
|
| 21 |
|
| 22 |
CHEN S F, SUN P Z, SONG Y B, et al. DiffusionDet: diffusion model for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2023: 19773-19786.
|
| 23 |
GONG K X, LI S, LI S G, et al. Improving transferability for domain adaptive detection transformers[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York, USA: ACM Press, 2022: 1543-1551.
|
| 24 |
SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distribution alignment for adaptive object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 6949-6958.
|
| 25 |
VIBASHAN V S, OZA P, PATEL V M. Instance relation graph guided source-free domain adaptive object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 3520-3530.
|
| 26 |
魏琢艺, 罗迈, 李文兵, 等. 基于多源域适应的单细胞智能分类. 计算机工程, 2024, 50 (6): 48- 55.
doi: 10.19678/j.issn.1000-3428.0067378
|
|
WEI Z Y , LUO M , LI W B , et al. Intelligent single-cell classification based on multisource domain adaptation. Computer Engineering, 2024, 50 (6): 48- 55.
doi: 10.19678/j.issn.1000-3428.0067378
|
| 27 |
|
| 28 |
ZHANG H , LUO G Y , LI J L , et al. C2FDA: coarse-to-fine domain adaptation for traffic object detection. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (8): 12633- 12647.
doi: 10.1109/TITS.2021.3115823
|
| 29 |
ZHENG Y T, HUANG D, LIU S T, et al. Cross-domain object detection through coarse-to-fine feature adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 13763-13772.
|
| 30 |
RAMAMONJISON R, BANITALEBI-DEHKORDI A, KANG X Y, et al. SimROD: a simple adaptation method for robust object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 3550-3559.
|
| 31 |
CHENG Z, LUO X, SHI Y Q, et al. Fabric defect detection algorithm based on YOLOv3 transfer learning[C]//Proceedings of the International Conference on Frontiers of Electronics, Information and Computation Technologies. Washington D.C., USA: IEEE Press, 2021: 1-7.
|
| 32 |
|
| 33 |
DI L , DENG S S , LIANG J Z , et al. Context receptive field and adaptive feature fusion for fabric defect detection. Soft Computing, 2023, 27 (18): 13421- 13434.
doi: 10.1007/s00500-022-07675-8
|
| 34 |
LU B Y , HUANG B Q . A texture-aware one-stage fabric defect detection network with adaptive feature fusion and multi-task training. Journal of Intelligent Manufacturing, 2024, 35 (3): 1267- 1280.
doi: 10.1007/s10845-023-02105-4
|
| 35 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the International Conference on Learning Representations. Washington D.C., USA: IEEE Press, 2015: 23-30.
|
| 36 |
GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the International Conference on Machine Learning. Washington D.C., USA: IEEE Press, 2015: 1180-1189.
|
| 37 |
|
| 38 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2009: 248-255.
|
| 39 |
HE Z W, ZHANG L. Multi-adversarial Faster-RCNN for unrestricted object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 6667-6676.
|