| 1 | ZHAI G T, MIN X K. Perceptual image quality assessment: a survey. Science China(Information Sciences), 2020, 63 (11): 84- 135. | 
																													
																							| 2 | 熊超, 沈远彤, 杨迪威. 一种针对高斯模糊图像的无参质量评价方法. 计算机工程与应用, 2013, 49 (15): 192-194, 237  doi: 10.3778/j.issn.1002-8331.1111-0475
 | 
																													
																							|  | XIONG C, SHEN Y T, YANG D W. No reference image quality assessment method for Gaussian blurred images based on wavelet power spectrum. Computer Engineering and Applications, 2013, 49 (15): 192-194, 237  doi: 10.3778/j.issn.1002-8331.1111-0475
 | 
																													
																							| 3 | 曹健. 基于局部特征的图像目标识别技术研究[D]. 北京: 北京理工大学, 2010. | 
																													
																							|  | CAO J. Research on image target recognition technology based on local features[D]. Beijing: Beijing Institute of Technology, 2010. (in Chinese) | 
																													
																							| 4 | WANG Q, CHU J, XU L, et al. A new blind image quality framework based on natural color statistic. Neurocomputing, 2016, 173, 1798- 1810.  doi: 10.1016/j.neucom.2015.09.057
 | 
																													
																							| 5 | 高绍姝, 金伟其, 王岭雪, 等. 基于颜色协调性的典型场景彩色融合图像颜色质量评价. 北京理工大学学报, 2012, 32 (10): 1054- 1060.  doi: 10.3969/j.issn.1001-0645.2012.10.012
 | 
																													
																							|  | GAO S S, JIN W Q, WANG L X, et al. Color-quality assessment for color fusion images of typical scenes based on color harmony. Transactions of Beijing Institute of Technology, 2012, 32 (10): 1054- 1060.  doi: 10.3969/j.issn.1001-0645.2012.10.012
 | 
																													
																							| 6 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612.  doi: 10.1109/TIP.2003.819861
 | 
																													
																							| 7 | 廖宇, 郭黎. 基于梯度相关性分解的无参考图像质量评价方法. 计算机应用, 2013, 33 (3): 691- 694.  URL
 | 
																													
																							|  | LIAO Y, GUO L. New no-reference image quality assessment method based on decomposition of gradient similarity. Journal of Computer Applications, 2013, 33 (3): 691- 694.  URL
 | 
																													
																							| 8 | ZHANG Z C, SUN W, MIN X K, et al. A full-reference quality assessment metric for fine-grained compressed images[C]//Proceedings of International Conference on Visual Communications and Image Processing. Washington D. C., USA: IEEE Press, 2022: 1-4. | 
																													
																							| 9 | ZHAN Y B, ZHANG R, WU Q. A structural variation classification model for image quality assessment. IEEE Transactions on Multimedia, 2017, 19 (8): 1837- 1847.  doi: 10.1109/TMM.2017.2689923
 | 
																													
																							| 10 | WANG X, TIAN B F, LIANG C, et al. Blind image quality assessment for measuring image blur[C]//Proceedings of Congress on Image and Signal Processing. Washington D. C., USA: IEEE Press, 2008: 467-470. | 
																													
																							| 11 | MOUSAVI S M H, MOSAVI S M H. A new edge and pixel-based image quality assessment metric for colour and depth images[C]//Proceedings of the 9th Iranian Joint Congress on Fuzzy and Intelligent Systems. Washington D. C., USA: IEEE Press, 2022: 1-11. | 
																													
																							| 12 | LIU D B, CHEN Z B, MA H D, et al. No reference block based blur detection[C]//Proceedings of International Workshop on Quality of Multimedia Experience. Washington D. C., USA: IEEE Press, 2009: 75-80. | 
																													
																							| 13 | ZHAN Y B, ZHANG R. No-reference JPEG image quality assessment based on blockiness and luminance change. IEEE Signal Processing Letters, 2017, 24 (6): 760- 764.  doi: 10.1109/LSP.2017.2688371
 | 
																													
																							| 14 | AGHAPOUR MALEKI S, GHASSEMIAN H. Spatial quality assessment of pansharpened images based on gray level co-occurrence matrix[C]//Proceedings of International Conference on Machine Vision and Image Processing. Washington D. C., USA: IEEE Press, 2022: 1-6. | 
																													
																							| 15 | ZHU X, MILANFAR P. Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2010, 19 (12): 3116- 3132.  doi: 10.1109/TIP.2010.2052820
 | 
																													
																							| 16 | SHEIKH H R, BOVIK A C, CORMACK L. No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Transactions on Image Processing, 2005, 14 (11): 1918- 1927.  doi: 10.1109/TIP.2005.854492
 | 
																													
																							| 17 | MOORTHY A K, BOVIK A C. A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters, 2010, 17 (5): 513- 516.  doi: 10.1109/LSP.2010.2043888
 | 
																													
																							| 18 | MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2012, 21 (12): 4695- 4708.  doi: 10.1109/TIP.2012.2214050
 | 
																													
																							| 19 | MA K D, LIU W T, ZHANG K, et al. End-to-end blind image quality assessment using deep neural networks. IEEE Transactions on Image Processing, 2018, 27 (3): 1202- 1213.  doi: 10.1109/TIP.2017.2774045
 | 
																													
																							| 20 | GAO F, WANG Y, LI P, et al. DeepSim: deep similarity for image quality assessment. Neurocomputing, 2017, 257, 104- 114.  doi: 10.1016/j.neucom.2017.01.054
 | 
																													
																							| 21 | JIN C, ZHAO X N, XIONG Q, et al. Blind image quality assessment for multiple distortion image. Circuits, Systems, and Signal Processing, 2022, 41 (10): 5807- 5826.  doi: 10.1007/s00034-022-02055-x
 | 
																													
																							| 22 | 刘海, 杨环, 潘振宽, 等. 基于生成感知差异的无参考图像质量评价模型. 计算机工程, 2021, 47 (5): 205- 212.  URL
 | 
																													
																							|  | LIU H, YANG H, PAN Z K, et al. No-reference image quality assessment model based on generated perceptual difference. Computer Engineering, 2021, 47 (5): 205- 212.  URL
 | 
																													
																							| 23 | 史玉华, 张闯, 迟兆鑫. 基于多元特征的立体图像质量评价方法. 计算机工程, 2021, 47 (12): 256- 265.  URL
 | 
																													
																							|  | SHI Y H, ZHANG C, CHI Z X. Method for stereoscopic image quality assessment based on multiple features. Computer Engineering, 2021, 47 (12): 256- 265.  URL
 | 
																													
																							| 24 |  | 
																													
																							| 25 |  | 
																													
																							| 26 |  | 
																													
																							| 27 | MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a "completely blind" image quality analyzer. IEEE Signal Processing Letters, 2013, 20 (3): 209- 212.  doi: 10.1109/LSP.2012.2227726
 | 
																													
																							| 28 | YE P, KUMAR J, KANG L, et al. Unsupervised feature learning framework for no-reference image quality assessment[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 1098-1105. | 
																													
																							| 29 | HOU W L, GAO X B, TAO D C, et al. Blind image quality assessment via deep learning. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26 (6): 1275- 1286.  doi: 10.1109/TNNLS.2014.2336852
 | 
																													
																							| 30 | HE L H, TAO D C, LI X L, et al. Sparse representation for blind image quality assessment[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 1146-1153. |