| 1 | XU Q T, ZHAO N J. A facial expression recognition algorithm based on CNN and LBP feature[C]//Proceedings of the 4th IEEE Information Technology, Networking, Electronic and Automation Control Conference. Washington D. C., USA: IEEE Press, 2020: 2304-2308. | 
																													
																							| 2 | WANG Y, WU Q L. Research on face recognition technology based on PCA and SVM[C]//Proceedings of the 7th International Conference on Big Data Analytics. Washington D. C., USA: IEEE Press, 2022: 248-252. | 
																													
																							| 3 | LI Y, MA H, FANG C X, et al. Fusion of PHOG and Gabor for facial expression recognition[C]//Proceedings of the 7th International Conference on Intelligent Computing and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 968-971. | 
																													
																							| 4 | ZHOU Y, FENG Y Y, ZENG S Y, et al. Facial expression recognition based on convolutional neural network[C]//Proceedings of the 10th IEEE International Conference on Software Engineering and Service Science. Washington D. C., USA: IEEE Press, 2020: 410-413. | 
																													
																							| 5 | LESIANGI F S, MAUKO A Y, DJAHI B S. Feature extraction Hue, Saturation, Value(HSV) and Gray Level Cooccurrence Matrix(GLCM) for identification of woven fabric motifs in south central Timor regency. Journal of Physics Series, 2021, (1): 012010. | 
																													
																							| 6 | THAMBA M W, HEMAJOTHI S, MARY A E A. Real-time facial expression recognition for affect identification using multi-dimensional SVM. Journal of Ambient Intelligence and Humanized Computing, 2021, 12 (6): 6355- 6365.  doi: 10.1007/s12652-020-02221-6
 | 
																													
																							| 7 | FAN Z, XIE J K, WANG Z Y, et al. Image classification method based on improved KNN algorithm. Journal of Physics Series, 2021, 30 (3): 012009. | 
																													
																							| 8 | WANG S Q, GUAN S E, LIN H, et al. Micro-expression recognition based on optical flow and PCANet. Sensors, 2022, 22 (11): 4296.  doi: 10.3390/s22114296
 | 
																													
																							| 9 | ZHANG L, XU C, LI S. Facial expression recognition of infants based on multi-stream CNN fusion network[C]// Proceedings of the 5th IEEE International Conference on Signal and Image Processing. Washington D. C., USA: IEEE Press, 2020: 37-41. | 
																													
																							| 10 | ZHANG Q. Facial expression recognition in VGG network based on LBP feature extraction[C]//Proceedings of the 5th International Conference on Mechanical, Control and Computer Engineering. Washington D. C., USA: IEEE Press, 2021: 2089-2092. | 
																													
																							| 11 | BOUALLEGUE G, DJEMAL R. EEG person identification using facenet, LSTM-RNN and SVM[C]//Proceedings of the 17th International Multi-Conference on Systems, Signals & Devices. Washington D. C., USA: IEEE Press, 2021: 22-28. | 
																													
																							| 12 | WANG X P, LI W X, HUANG D. Expression-latent-space-guided GAN for facial expression animation based on discrete labels[C]//Proceedings of the 16th IEEE International Conference on Automatic Face and Gesture Recognition. Washington D. C., USA: IEEE Press, 2022: 1-8. | 
																													
																							| 13 | CHEN Y, LIU S. Deep partial occlusion facial expression recognition via improved CNN[C]//Proceedings of International Conference on Visual Computing. Berlin, Germany: Springer, 2020: 451-462. | 
																													
																							| 14 | XU X K, TAO R, FENG X Y, et al. A lightweight facial expression recognition network based on dense connections[C]//Proceedings of International Conference on Knowledge Management in Organizations. Berlin, Germany: Springer, 2022: 347-359. | 
																													
																							| 15 | XU X F, ZHANG L, DUAN C D, et al. Research on inception module incorporated Siamese convolutional neural networks to realize face recognition. IEEE Access, 2019, 8, 12168- 12178. | 
																													
																							| 16 | NAINAN N A, JALAN R. Real time face mask detection using MobileNetV2 and InceptionV3 models[C]//Proceedings of IEEE Mysore Sub Section International Conference. Washington D. C., USA: IEEE Press, 2021: 341-345. | 
																													
																							| 17 | ALI W, TIAN W H, DIN S U, et al. Classical and modern face recognition approaches: a complete review. Multimedia Tools and Applications, 2021, 80 (3): 4825- 4880.  doi: 10.1007/s11042-020-09850-1
 | 
																													
																							| 18 | WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2): 210- 227.  doi: 10.1109/TPAMI.2008.79
 | 
																													
																							| 19 | WANG W, JIN J X. Super-resolution reconstruction of human face image based on network of residual dense connection channel attentional[C]//Proceedings of the 5th International Conference on Mechanical, Control and Computer Engineering. Washington D. C., USA: IEEE Press, 2021: 1972-1977. | 
																													
																							| 20 | ZHANG X, CHEN Z, WEI Q J. Research and application of facial expression recognition based on attention mechanism[C]//Proceedings of IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers. [S. 1. ]: IEEE Press, 2021: 282-285. | 
																													
																							| 21 | LI J, JIN K, ZHOU D L, et al. Attention mechanism-based CNN for facial expression recognition. Neurocomputing, 2020, 411, 340- 350.  doi: 10.1016/j.neucom.2020.06.014
 | 
																													
																							| 22 | GERA D, BALASUBRAMANIAN S, JAMI A. CERN: compact facial expression recognition net. Pattern Recognition Letters, 2022, 155, 9- 18.  doi: 10.1016/j.patrec.2022.01.013
 | 
																													
																							| 23 | DING H, ZHOU P, CHELLAPPA R. Occlusion-adaptive deep network for robust facial expression recognition[C]//Proceedings of IEEE International Joint Conference on Biometrics. Washington D. C., USA: IEEE Press, 2021: 1-9. | 
																													
																							| 24 | XIE X Y, MA Y A, LIU B, et al. A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks. Frontiers in Plant Science, 2020, 11, 751.  doi: 10.3389/fpls.2020.00751
 | 
																													
																							| 25 | ZHANG J W, YAN X D, CHENG Z L, et al. A face recognition algorithm based on feature fusion. Concurrency and Computation, 2022, 34 (14): e5748. |