| 1 | 王治, 韩祥. 视频结构化解析技术在公安警务实战中的建设与应用. 警察技术, 2018, (5): 63- 66.  URL
 | 
																													
																							|  | WANG Z, HAN X. The construction and application of video structured analysis technology in public security police actual combat. Police Technology, 2018, (5): 63- 66.  URL
 | 
																													
																							| 2 | 许磊, 李志刚, 黎智辉, 等. 人像检验鉴定探讨. 刑事技术, 2020, 45 (2): 111- 116.  URL
 | 
																													
																							|  | XU L, LI Z G, LI Z H, et al. Cogitation into human image identification. Forensic Science and Technology, 2020, 45 (2): 111- 116.  URL
 | 
																													
																							| 3 | 黎智辉, 谢兰迟, 吕游, 等. 视频侦查中多摄像头下嫌疑目标同一的概率研究. 刑事技术, 2022, 47 (1): 24- 34.  URL
 | 
																													
																							|  | LI Z H, XIE L C, LÜ Y, et al. Probabilistic approach to identifying same suspected target from multiple cameras in video investigation. Forensic Science and Technology, 2022, 47 (1): 24- 34.  URL
 | 
																													
																							| 4 | LI D W, CHEN X T, HUANG K Q. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios[C]//Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 111-115. | 
																													
																							| 5 | SUDOWE P, SPITZER H, LEIBE B. Person attribute recognition with a jointly-trained holistic CNN model[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2016: 329-337. | 
																													
																							| 6 | LI D W, CHEN X T, ZHANG Z, et al. Pose guided deep model for pedestrian attribute recognition in surveillance scenarios[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2018: 1-6. | 
																													
																							| 7 |  | 
																													
																							| 8 | TANG C F, SHENG L, ZHANG Z X, et al. Improving pedestrian attribute recognition with weakly-supervised multi-scale attribute-specific localization[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 4996-5005. | 
																													
																							| 9 | TAN Z C, YANG Y, WAN J, et al. Relation-aware pedestrian attribute recognition with graph convolutional networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 12055- 12062.  doi: 10.1609/aaai.v34i07.6883
 | 
																													
																							| 10 | JIA J, HUANG H, CHEN X, et al. Rethinking of pedestrian attribute recognition: a reliable evaluation under zero-shot pedestrian identity setting[EB/OL]. [2021-11-22]. https://arxiv.org/abs/2107.03576 . | 
																													
																							| 11 | LIU X H, ZHAO H Y, TIAN M Q, et al. HydraPlus-Net: attentive deep features for pedestrian analysis[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 350-359. | 
																													
																							| 12 |  | 
																													
																							| 13 | WANG J Y, ZHU X T, GONG S G, et al. Attribute recognition by joint recurrent learning of context and correlation[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 531-540. | 
																													
																							| 14 |  | 
																													
																							| 15 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010. | 
																													
																							| 16 |  | 
																													
																							| 17 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2021-11-22]. https://arxiv.org/abs/2010.11929 . | 
																													
																							| 18 | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical Vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 9992-10002. | 
																													
																							| 19 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778. | 
																													
																							| 20 | TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2019: 6105-6114. | 
																													
																							| 21 |  | 
																													
																							| 22 | TOUVRON H, CORD M, SABLAYROLLES A, et al. Going deeper with image Transformers[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 32-42. | 
																													
																							| 23 |  | 
																													
																							| 24 | DENG Y B, LUO P, LOY C C, et al. Pedestrian attribute recognition at far distance[C]//Proceedings of the 22nd ACM International Conference on Multimedia. New York, USA: ACM Press, 2014: 789-792. | 
																													
																							| 25 | CUBUK E D, ZOPH B, SHLENS J, et al. RandAugment: practical automated data augmentation with a reduced search space[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3008-3017. | 
																													
																							| 26 | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9 (11): 72- 84. | 
																													
																							| 27 | DAI X Y, CHEN Y P, YANG J W, et al. Dynamic DETR: end-to-end object detection with dynamic attention[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 2968-2977. |