| 1 | 潘梦竹, 李千目, 邱天. 深度多模态表示学习的研究综述. 计算机工程与应用, 2023, 59(2): 48- 64.  URL
 | 
																													
																							|  | PAN M Z, LI Q M, QIU T. Survey of research on deep multimodal representation learning. Computer Engineering and Applications, 2023, 59(2): 48- 64.  URL
 | 
																													
																							| 2 | 王颖洁, 张程烨, 白凤波, 等. 中文命名实体识别研究综述. 计算机科学与探索, 2023, 17(2): 324- 341.  URL
 | 
																													
																							|  | WANG Y J, ZHANG C Y, BAI F B, et al. Review of Chinese named entity recognition research. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324- 341.  URL
 | 
																													
																							| 3 | 隋国华, 李陶然, 刘昊, 等. 基于图表示学习的领域知识图谱推理技术研究. 计算机工程, 2023, 49(9): 89- 98.  URL
 | 
																													
																							|  | SUI G H, LI T R, LIU H, et al. Research on domain knowledge graph inference technology based on graph representation learning. Computer Engineering, 2023, 49(9): 89- 98.  URL
 | 
																													
																							| 4 | 潘正高. 基于规则和统计相结合的中文命名实体识别研究. 情报科学, 2012, 30(5): 708-712, 786.  URL
 | 
																													
																							|  | PAN Z G. Research on the recognition of Chinese named entity based on rules and statistics. Information Science, 2012, 30(5): 708-712, 786.  URL
 | 
																													
																							| 5 | 闫萍. 基于规则和概率统计相结合的中文命名实体识别研究. 计算机与数字工程, 2011, 39(9): 88- 91.  URL
 | 
																													
																							|  | YAN P. Research on the identification for Chinese named entity based on combination of rules and statistic analysis. Computer & Digital Engineering, 2011, 39(9): 88- 91.  URL
 | 
																													
																							| 6 | 王欢, 朱文球, 吴岳忠, 等. 基于数控机床设备故障领域的命名实体识别. 工程科学学报, 2020, 42(4): 476- 482.  URL
 | 
																													
																							|  | WANG H, ZHU W Q, WU Y Z, et al. Named entity recognition based on equipment and fault field of CNC machine tools. Chinese Journal of Engineering, 2020, 42(4): 476- 482.  URL
 | 
																													
																							| 7 | 杨培, 杨志豪, 罗凌, 等. 基于注意机制的化学药物命名实体识别. 计算机研究与发展, 2018, 55(7): 1548- 1556.  URL
 | 
																													
																							|  | YANG P, YANG Z H, LUO L, et al. An attention-based approach for chemical compound and drug named entity recognition. Journal of Computer Research and Development, 2018, 55(7): 1548- 1556.  URL
 | 
																													
																							| 8 | ZHAO Z H, YANG Z H, LUO L, et al. Disease named entity recognition from biomedical literature using a novel convolutional neural network. BMC Medical Genomics, 2017, 10(Suppl 5): 75- 83.  doi: 10.1186/s12920-017-0316-8
 | 
																													
																							| 9 | 王蓬辉, 李明正, 李思. 基于数据增强的中文医疗命名实体识别. 北京邮电大学学报, 2020, 43(5): 84- 90.  URL
 | 
																													
																							|  | WANG P H, LI M Z, LI S. Data augmentation for Chinese clinical named entity recognition. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5): 84- 90.  URL
 | 
																													
																							| 10 | AGUILAR G, MAHARJAN S, LÓPEZ M A P, et al. A multi-task approach for named entity recognition in social media data[C]//Proceedings of the 3rd Workshop on Noisy User-generated Text. Stroudsburg, USA: Association for Computational Linguistics, 2017: 148-153. | 
																													
																							| 11 |  | 
																													
																							| 12 | ZHENG C M, WU Z W, WANG T, et al. Object-aware multimodal named entity recognition in social media posts with adversarial learning. IEEE Transactions on Multimedia, 2021, 23, 2520- 2532.  doi: 10.1109/TMM.2020.3013398
 | 
																													
																							| 13 | YU J F, JIANG J, YANG L, et al. Improving multimodal named entity recognition via entity span detection with unified multimodal transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 3342-3352. | 
																													
																							| 14 | CHEN D W, LI Z X, GU B B, et al. Multimodal named entity recognition with image attributes and image knowledge[C]//Proceedings of the 26th International Conference on Database Systems for Advanced Applications. Berlin, Germany: Springer, 2021: 186-201. | 
																													
																							| 15 | ZHAO F, LI C H, WU Z, et al. Learning from different text-image Pairs: a relation-enhanced graph convolutional network for multimodal NER[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York, USA: ACM Press, 2022: 3983-3992. | 
																													
																							| 16 | WANG J, YANG Y, LIU K Y, et al. M3S: scene graph driven multi-granularity multi-task learning for multi-modal NER. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2022, 31, 111- 120. | 
																													
																							| 17 | 李家瑞, 李华昱, 闫阳. 面向多源异质数据源的学科知识图谱构建方法. 计算机系统应用, 2021, 30(10): 59- 67.  URL
 | 
																													
																							|  | LI J R, LI H Y, YAN Y. Construction of discipline knowledge graph for multi-source heterogeneous data sources. Computer Systems & Applications, 2021, 30(10): 59- 67.  URL
 | 
																													
																							| 18 |  | 
																													
																							| 19 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 248-255. | 
																													
																							| 20 | ZHOU B H, ZHANG Y, SONG K H, et al. A span-based multimodal variational autoencoder for semi-supervised multimodal named entity recognition[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2022: 6293-6302. | 
																													
																							| 21 | 胡新棒, 于溆乔, 李邵梅, 等. 基于知识增强的中文命名实体识别. 计算机工程, 2021, 47(11): 84- 92.  URL
 | 
																													
																							|  | HU X B, YU X Q, LI S M, et al. Chinese named entity recognition based on knowledge enhancement. Computer Engineering, 2021, 47(11): 84- 92.  URL
 | 
																													
																							| 22 | ZHANG D, WEI S Z, LI S S, et al. Multi-modal graph fusion for named entity recognition with targeted visual guidance. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(16): 14347- 14355.  doi: 10.1609/aaai.v35i16.17687
 | 
																													
																							| 23 | ZHANG Q, FU J L, LIU X Y, et al. Adaptive co-attention network for named entity recognition in Tweets. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 5674- 5681. | 
																													
																							| 24 | LU D, NEVES L, CARVALHO V, et al. Visual attention model for name tagging in multimodal social media[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2018: 1990-1999. | 
																													
																							| 25 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-07-01]. https://arxiv.org/abs/1810.04805v2 . | 
																													
																							| 26 | HU S L, ZHANG H J, HU X S, et al. Chinese named entity recognition based on BERT-CRF model[C]//Proceedings of the 22nd IEEE/ACIS International Conference on Computer and Information Science. Washington D. C., USA: IEEE Press, 2022: 105-108. | 
																													
																							| 27 | XU B, HUANG S Z, SHA C F, et al. MAF: a general matching and alignment framework for multimodal named entity recognition[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 1215-1223. | 
																													
																							| 28 | JIA M, SHEN L, SHEN X, et al. MNER-QG: an end-to-end MRC framework for multimodal named entity recognition with query grounding. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(7): 8032- 8040. |