| 1 | 齐金山, 梁循, 李志宇, 等.  大规模复杂信息网络表示学习: 概念、方法与挑战. 计算机学报, 2018, 41 (10): 2394- 2420.  doi: 10.11897/SP.J.1016.2018.02394
 | 
																													
																							|  |  QI J S ,  LIANG X ,  LI Z Y , et al.  Representation learning of large-scale complex information network: concepts, methods and challenges. Chinese Journal of Computers, 2018, 41 (10): 2394- 2420.  doi: 10.11897/SP.J.1016.2018.02394
 | 
																													
																							| 2 |  BHAGAT S ,  CORMODE G ,  MUTHUKRISHNAN S .  Node classification in social networks. Berlin, Germany: Springer, 2011: 115- 148. | 
																													
																							| 3 | ZHAO T X, ZHANG X, WANG S H. GraphSMOTE: imbalanced node classification on graphs with graph neural networks[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2021: 833-841. | 
																													
																							| 4 |  | 
																													
																							| 5 |  LÜ L Y ,  ZHOU T .  Link prediction in complex networks: a survey. Statistical Mechanics and Its Applications, 2011, 390 (6): 1150- 1170.  doi: 10.1016/j.physa.2010.11.027
 | 
																													
																							| 6 | ZHU Z C, ZHANG Z B, XHONNEUX L P, et al. Neural bellman-ford networks: a general graph neural network framework for link prediction[EB/OL]. [2022-08-10]. https://arxiv.org/abs/2106.06935 . | 
																													
																							| 7 |  WANG M H ,  QIU L L ,  WANG X L .  A survey on knowledge graph embeddings for link prediction. Symmetry, 2021, 13 (3): 485.  doi: 10.3390/sym13030485
 | 
																													
																							| 8 | 王思檬, 曹佳.  边异质网络中的社区结构发现算法. 计算机工程, 2019, 45 (6): 140- 145.  URL
 | 
																													
																							|  |  WANG S M ,  CAO J .  Community structure detection algorithm for heterogeneous edge network. Computer Engineering, 2019, 45 (6): 140- 145.  URL
 | 
																													
																							| 9 | 李有红, 王学军, 谌裕勇, 等.  一种融合邻边属性的个人社交网络社区发现算法. 计算机工程, 2021, 47 (7): 81- 87.  URL
 | 
																													
																							|  |  LI Y H ,  WANG X J ,  CHEN Y Y , et al.  A community discovery algorithm fused with adjacent edge attribute for personal social network. Computer Engineering, 2021, 47 (7): 81- 87.  URL
 | 
																													
																							| 10 | AGARWAL S, BRANSON K, BELONGIE S. Higher order learning with graphs[C]//Proceedings of the 23rd International Conference on Machine Learning. New York, USA: ACM Press, 2006: 17-24. | 
																													
																							| 11 | LOUIS A. Hypergraph Markov operators, eigenvalues and approximation algorithms[C]//Proceedings of the 47th Annual ACM Symposium on Theory of Computing. New York, USA: ACM Press, 2015: 713-722. | 
																													
																							| 12 |  HUANG J E ,  CHEN C A ,  YE F H , et al.  Hyper2vec: biased random walk for hyper-network embedding. Berlin, Germany: Springer, 2019: 273- 277. | 
																													
																							| 13 | HUANG J, LIU X, SONG Y Q. Hyper-path-based representation learning for hyper-networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 449-458. | 
																													
																							| 14 |  TU K ,  CUI P ,  WANG X A , et al.  Structural deep embedding for hyper-networks. Artificial Intelligence, 2018, 32 (1): 426- 433. | 
																													
																							| 15 |  | 
																													
																							| 16 | 石川, 王睿嘉, 王啸.  异质信息网络分析与应用综述. 软件学报, 2022, 33 (2): 598- 621.  URL
 | 
																													
																							|  |  SHI C ,  WANG R J ,  WANG X .  Survey on heterogeneous information networks analysis and applications. Journal of Software, 2022, 33 (2): 598- 621.  URL
 | 
																													
																							| 17 |  FU G J ,  YUAN B ,  DUAN Q Q , et al.  Representation learning for heterogeneous information networks via embedding events. Berlin, Germany: Springer, 2019. | 
																													
																							| 18 |  BRETTO A .  Hypergraph theory: an introduction. Berlin, Germany: Springer, 2013. | 
																													
																							| 19 | 刘贞国, 朱宇, 刘连照, 等.  基于转化策略的异质超网络表示学习. 计算机应用研究, 2022, 39 (11): 3333- 3339.  URL
 | 
																													
																							|  |  LIU Z G ,  ZHU Y ,  LIU L Z , et al.  Heterogeneous hypernetwork representation learning based on transformation strategy. Application Research of Computers, 2022, 39 (11): 3333- 3339.  URL
 | 
																													
																							| 20 |  ZHENG V ,  CAO B ,  ZHENG Y , et al.  Collaborative filtering meets mobile recommendation: a user-centered approach. Artificial Intelligence, 2010, 24 (1): 236- 241. | 
																													
																							| 21 |  HARPER F M ,  JOSEPH A K .  The MovieLens datasets: history and context. ACM Transactions on Interactive Intelligent Systems, 2016, 5 (4): 1- 19. | 
																													
																							| 22 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710. | 
																													
																							| 23 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings International Conference on Knowledge Discovery and Data Mining. Washington D.C., USA: IEEE Press, 2016: 855-864. | 
																													
																							| 24 | DONG Y X, CHAWLA N V, SWAMI A. metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 135-144. | 
																													
																							| 25 |  ZHAN L ,  JIA T .  CoarSAS2hvec: heterogeneous information network embedding with balanced network sampling. Entropy, 2022, 24 (2): 276. | 
																													
																							| 26 | 姜正申, 刘宏志, 付彬, 等.  集成学习的泛化误差和AUC分解理论及其在权重优化中的应用. 计算机学报, 2019, 42 (1): 1- 15.  URL
 | 
																													
																							|  |  JIANG Z S ,  LIU H Z ,  FU B , et al.  Decomposition theories of generalization error and AUC in ensemble learning with application in weight optimization. Chinese Journal of Computers, 2019, 42 (1): 1- 15.  URL
 |