| 1 |  LIU X Y ,  TANG J .  Network representation learning: a macro and micro view. AI Open, 2021, 2, 43- 64.  doi: 10.1016/j.aiopen.2021.02.001
 | 
																													
																							| 2 | HU Z N, DONG Y X, WANG K S, et al. GPT-GNN: generative pre-training of graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2020: 1857-1867. | 
																													
																							| 3 |  | 
																													
																							| 4 |  | 
																													
																							| 5 |  LIU Y X ,  JIN M ,  PAN S R , et al.  Graph self-supervised learning: a survey. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (6): 5879- 5900. | 
																													
																							| 6 |  | 
																													
																							| 7 |  | 
																													
																							| 8 |  | 
																													
																							| 9 |  PAN S R ,  HU R Q ,  FUNG S F , et al.  Learning graph embedding with adversarial training methods. IEEE Transactions on Cybernetics, 2020, 50 (6): 2475- 2487.  doi: 10.1109/TCYB.2019.2932096
 | 
																													
																							| 10 |  | 
																													
																							| 11 | WANG C, PAN S R, LONG G D, et al. MGAE: marginalized graph autoencoder for graph clustering[C]//Proceedings of 2017 ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2017: 889-898. | 
																													
																							| 12 | PARK J, LEE M, CHANG H J, et al. Symmetric graph convolutional autoencoder for unsupervised graph representation learning[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2020: 6518-6527. | 
																													
																							| 13 |  | 
																													
																							| 14 | WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 1225-1234. | 
																													
																							| 15 |  | 
																													
																							| 16 |  | 
																													
																							| 17 |  | 
																													
																							| 18 |  | 
																													
																							| 19 | 富坤, 赵晓梦, 付紫桐, 等.  基于不完全信息的深度网络表示学习方法. 计算机科学, 2021, 48 (12): 212- 218.  URL
 | 
																													
																							|  |  FU K ,  ZHAO X M ,  FU Z T , et al.  Deep network representation learning method on incomplete information networks. Computer Science, 2021, 48 (12): 212- 218.  URL
 | 
																													
																							| 20 | CAO S S, LU W, XU Q K. Deep neural networks for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. New York, USA: ACM Press, 2016: 1145-1152. | 
																													
																							| 21 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2014: 2672-2680. | 
																													
																							| 22 |  | 
																													
																							| 23 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710. | 
																													
																							| 24 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 855-864. | 
																													
																							| 25 | HUANG X A, LI J D, HU X A. Accelerated attributed network embedding[C]//Proceedings of 2017 SIAM International Conference on Data Mining. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2017: 633-641. |