| 1 | 原继东, 王志海. 时间序列的表示与分类算法综述. 计算机科学, 2015, 42(3): 1- 7.  URL
 | 
																													
																							|  | YUAN J D, WANG Z H. Review of time series representation and classification techniques. Computer Science, 2015, 42(3): 1- 7.  URL
 | 
																													
																							| 2 | 汤强, 谢明中, 罗元盛. 基于SVR的用电负荷特征三维回归模型. 计算机工程, 2017, 43(9): 300-303, 309.  doi: 10.3969/j.issn.1000-3428.2017.09.051
 | 
																													
																							|  | TANG Q, XIE M Z, LUO Y S. SVR based three dimensional regression model of power load characteristics. Computer Engineering, 2017, 43(9): 300-303, 309.  doi: 10.3969/j.issn.1000-3428.2017.09.051
 | 
																													
																							| 3 | 朱原媛, 杨有龙, 张恒伟. 基于贝叶斯网络的混沌时间序列预测. 计算机工程与应用, 2012, 48(13): 100- 104.  URL
 | 
																													
																							|  | ZHU Y Y, YANG Y L, ZHANG H W. Chaotic time series prediction based on Bayesian network. Computer Engineering and Applications, 2012, 48(13): 100- 104.  URL
 | 
																													
																							| 4 | HWANG Y, TONG A, CHOI J. Automatic construction of nonparametric relational regression models for multiple time series[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, USA: ACM Press, 2016: 3030-3039. | 
																													
																							| 5 | 李晓, 卢先领. 基于双重注意力机制和GRU网络的短期负荷预测模型. 计算机工程, 2022, 48(2): 291-296, 305.  doi: 10.3969/j.issn.1007-130X.2022.02.014
 | 
																													
																							|  | LI X, LU X L. Method for forecasting short-term power load based on dual-stage attention mechanism and gated recurrent unit network. Computer Engineering, 2022, 48(2): 291-296, 305.  doi: 10.3969/j.issn.1007-130X.2022.02.014
 | 
																													
																							| 6 | FARNOOSH A, AZARI B, OSTADABBAS S. Deep switching auto-regressive factorization: application to time series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2021: 7394-7403. | 
																													
																							| 7 | RASUL K, SEWARD C, SCHUSTER I, et al. Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting[EB/OL]. [2022-08-23]. https://arxiv.org/abs/2101.12072v2 . | 
																													
																							| 8 | CHEN Z, MA Q, LIN Z. Time-aware multi-scale RNNs for time series modeling[C]//Proceedings of International Joint Conference on Artificial Intelligence. Barcelona, Spain: [s. n], 2021: 2285-2291. | 
																													
																							| 9 | ELMAN J L. Finding structure in time. Cognitive Science, 1990, 14(2): 179- 211.  doi: 10.1207/s15516709cog1402_1
 | 
																													
																							| 10 | SIAMI-NAMINI S, TAVAKOLI N, SIAMI NAMIN A. A comparison of ARIMA and LSTM in forecasting time series[C]//Proceedings of the 17th International Conference on Machine Learning and Applications. Washington D. C., USA: IEEE Press, 2018: 1394-1401. | 
																													
																							| 11 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84- 90.  doi: 10.1145/3065386
 | 
																													
																							| 12 | YE J C, LIU Z H, DU B W, et al. Learning the evolutionary and multi-scale graph structure for multivariate time series forecasting[C]//Proceedings of the 28th Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 2296-2306. | 
																													
																							| 13 |  | 
																													
																							| 14 | SEN R, YU H F, DHILLON I. Think globally, act locally: a deep neural network approach to high-dimensional time series forecasting[EB/OL]. [2022-08-23]. https://arxiv.org/abs/1905.03806v2 . | 
																													
																							| 15 | LAI G K, CHANG W C, YANG Y M, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]//Proceedings of the 41st International Conference on Research & Development in Information Retrieval. New York, USA: ACM Press, 2018: 95-104. | 
																													
																							| 16 | GONG G J, AN X N, MAHATO N K, et al. Research on short-term load prediction based on Seq2seq model. Energies, 2019, 12(16): 3199.  doi: 10.3390/en12163199
 | 
																													
																							| 17 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1-9. | 
																													
																							| 18 | WU Z H, PAN S R, LONG G D, et al. Connecting the dots: multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 753-763. | 
																													
																							| 19 |  | 
																													
																							| 20 | CHEN B Y, LI P X, SUN C, et al. Multi attention module for visual tracking. Pattern Recognition, 2019, 87, 80- 93.  doi: 10.1016/j.patcog.2018.10.005
 | 
																													
																							| 21 | SHIH S Y, SUN F K, LEE H Y. Temporal pattern attention for multivariate time series forecasting. Machine Learning, 2019, 108(8/9): 1421- 1441. | 
																													
																							| 22 | 鹿天柱, 钱晓超, 何舒, 等. 一种基于深度学习的时间序列预测方法. 控制与决策, 2021, 36(3): 645- 652.  URL
 | 
																													
																							|  | LU T Z, QIAN X C, HE S, et al. A time series prediction method based on deep learning. Control and Decision, 2021, 36(3): 645- 652.  URL
 | 
																													
																							| 23 | YOO J, KANG U. Attention-based autoregression for accurate and efficient multivariate time series forecasting[C]//Proceedings of International Conference on Data Mining. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2021: 531-539. | 
																													
																							| 24 |  | 
																													
																							| 25 | ZHANG G P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 2003, 50, 159- 175. |