| 1 | DUTRA E A, ALMANÇA GONÇALVES DA COSTA OLIVEIRA D, KEDOR-HACKMANN E R M, et al. Determination of Sun Protection Factor (SPF) of sunscreens by ultraviolet spectrophotometry. Revista Brasileira De Ciências Farmacêuticas, 2004, 40 (3): 381- 385.  doi: 10.1590/S1516-93322004000300014
 | 
																													
																							| 2 | ZHANG C Y, PATRAS P, HADDADI H. Deep learning in mobile and wireless networking: a survey. IEEE Communications Surveys & Tutorials, 2019, 21 (3): 2224- 2287. | 
																													
																							| 3 | AL-SAADI A, SETCHI R, HICKS Y, et al. Routing protocol for heterogeneous wireless mesh networks. IEEE Transactions on Vehicular Technology, 2016, 65 (12): 9773- 9786.  doi: 10.1109/TVT.2016.2518931
 | 
																													
																							| 4 | LUONG N C, HOANG D T, GONG S M, et al. Applications of deep reinforcement learning in communications and networking: a survey. IEEE Communications Surveys & Tutorials, 2019, 21 (4): 3133- 3174. | 
																													
																							| 5 | 韩向敏, 鲍泓, 梁军, 等. 一种基于深度强化学习的自适应巡航控制算法. 计算机工程, 2018, 44 (7): 32-35, 41.  URL
 | 
																													
																							|  | HAN X M, BAO H, LIANG J, et al. An adaptive cruise control algorithm based on deep reinforcement learning. Computer Engineering, 2018, 44 (7): 32-35, 41.  URL
 | 
																													
																							| 6 | LIU W X. Intelligent routing based on deep reinforcement learning in software-defined data-center networks[C]//Proceedings of Symposium on Computers and Communications. Washington D. C., USA: IEEE Press, 2020: 1-6. | 
																													
																							| 7 | LIU Q Z, CHENG L, JIA A L, et al. Deep reinforcement learning for communication flow control in wireless mesh networks. IEEE Network, 2021, 35 (2): 112- 119.  doi: 10.1109/MNET.011.2000303
 | 
																													
																							| 8 | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20 (1): 61- 80.  doi: 10.1109/TNN.2008.2005605
 | 
																													
																							| 9 | 潘少明, 王玉杰, 种衍文. 基于图卷积神经网络的跨域行人再识别. 华中科技大学学报(自然科学版), 2020, 48 (9): 44- 49.  URL
 | 
																													
																							|  | PAN S M, WANG Y J, CHONG Y W. Cross-domain person re-identification using graph convolutional networks. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2020, 48 (9): 44- 49.  URL
 | 
																													
																							| 10 | RUSEK K, SUÁREZ-VARELA J, MESTRES A, et al. Unveiling the potential of graph neural networks for network modeling and optimization in SDN[C]//Proceedings of Symposium on SDN Research. New York, USA: ACM Press, 2019: 140-151. | 
																													
																							| 11 | SUÁREZ-VARELA J, CAROL-BOSCH S, RUSEK K, et al. Challenging the generalization capabilities of graph neural networks for network modeling[C]//Proceedings of the Conference on Posters and Demos. Washington D. C., USA: IEEE Press, 2019: 114-115. | 
																													
																							| 12 |  | 
																													
																							| 13 | 刘辰屹, 徐明伟, 耿男, 等. 基于机器学习的智能路由算法综述. 计算机研究与发展, 2020, 57 (4): 671- 687. | 
																													
																							|  | LIU C Y, XU M W, GENG N, et al. A survey on machine learning based routing algorithms. Journal of Computer Research and Development, 2020, 57 (4): 671- 687. | 
																													
																							| 14 | XU Q, ZHANG Y F, WU K, et al. Evaluating and boosting reinforcement learning for intra-domain routing[C]//Proceedings of the 16th International Conference on Mobile Ad Hoc and Sensor Systems. Washington D. C., USA: IEEE Press, 2020: 265-273. | 
																													
																							| 15 | CASAS-VELASCO D M, RENDON O M C, DA FONSECA N L S. DRSIR: a deep reinforcement learning approach for routing in software-defined networking. IEEE Transactions on Network and Service Management, 2022, 19 (4): 4807- 4820.  doi: 10.1109/TNSM.2021.3132491
 | 
																													
																							| 16 | ZHU H, GUPTA V, AHUJA S S, et al. Network planning with deep reinforcement learning[C]//Proceedings of the ACM SIGCOMM 2021 Conference. New York, USA: ACM Press, 2021: 258-271. | 
																													
																							| 17 | KATO N, FADLULLAH Z, MAO B, et al. The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wireless Communications, 2017, 24 (3): 146- 153.  doi: 10.1109/MWC.2016.1600317WC
 | 
																													
																							| 18 | HASSELT H V, GUEZ A, SILVER D. Deep rein- forcement learning with double Q-learning[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2016: 1-10. | 
																													
																							| 19 |  | 
																													
																							| 20 |  | 
																													
																							| 21 | CÂRPA R, DIAS DE ASSUNÇÃO M, GLÜCK O, et al. Responsive algorithms for handling load surges and switching links on in green networks[C]//Proceedings of International Conference on Communications. Washington D. C., USA: IEEE Press, 2016: 1-7. | 
																													
																							| 22 | PEDRO J, SANTOS J, PIRES J. Performance evaluation of integrated OTN/DWDM networks with single-stage multiplexing of optical channel data units[C]//Proceedings of the 13th International Conference on Transparent Optical Networks. Washington D. C., USA: IEEE Press, 2011: 1-4. | 
																													
																							| 23 | JIA J C, ZHANG Q. MMC01-3: shared tree for application-layer multi-source multicast[C]//Proceedings of Globecom. Washington D. C., USA: IEEE Press, 2007: 1-5. | 
																													
																							| 24 | 唐鑫, 徐彦彦, 潘少明. 基于图卷积神经网络的智能路由算法. 计算机工程, 2022, 48 (3): 38- 45.  URL
 | 
																													
																							|  | TANG X, XU Y Y, PAN S M. Intelligent routing algorithm based on the graph convolutional neural network framework. Computer Engineering, 2022, 48 (3): 38- 45.  URL
 | 
																													
																							| 25 | ZHAO L, WANG J D, LIU J J, et al. Routing for crowd management in smart cities: a deep reinforcement learning perspective. IEEE Communications Magazine, 2019, 57 (4): 88- 93. |