| 1 | NGUYEN D C, DING M, PATHIRANA P N, et al. 6G Internet of Things: a comprehensive survey. IEEE Internet of Things Journal, 2022, 9 (1): 359- 383.  doi: 10.1109/JIOT.2021.3103320
 | 
																													
																							| 2 | XIONG Z H, ZHANG Y, NIYATO D, et al. When mobile blockchain meets edge computing. IEEE Communications Magazine, 2018, 56 (8): 33- 39.  doi: 10.1109/MCOM.2018.1701095
 | 
																													
																							| 3 | XIONG Z H, ZHANG Y, LUONG N C, et al. The best of both worlds: a general architecture for data management in blockchain-enabled Internet of Things. IEEE Network, 2020, 34 (1): 166- 173.  doi: 10.1109/MNET.001.1900095
 | 
																													
																							| 4 | SEKARAN R, PATAN R, RAVEENDRAN A, et al. Survival study on blockchain based 6G-enabled mobile edge computation for IoT automation. IEEE Access, 2020, 8, 143453- 143463.  doi: 10.1109/ACCESS.2020.3013946
 | 
																													
																							| 5 | 郝敏, 叶东东, 余荣, 等. 区块链赋能的6G零信任车联网可信接入方案. 电子与信息学报, 2022, 44 (9): 3004- 3013. | 
																													
																							|  | HAO M, YE D D, YU R, et al. Trusted access scheme of 6G zero-trust vehicle networking with blockchain empowerment. Journal of Electronics & Information Technology, 2022, 44 (9): 3004- 3013. | 
																													
																							| 6 | LUU L, NARAYANAN V, ZHENG C D, et al. A secure sharding protocol for open blockchains[C]//Proceedings of 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2016: 17-30. | 
																													
																							| 7 | KOKORIS-KOGIAS E, JOVANOVIC P, GASSER L, et al. OmniLedger: a secure, scale-out, decentralized ledger via sharding[C]//Proceedings of 2018 IEEE Symposium on Security and Privacy. Washington D. C., USA: IEEE Press, 2018: 583-598. | 
																													
																							| 8 | ZAMANI M, MOVAHEDI M, RAYKOVA M. RapidChain: scaling blockchain via full sharding[C]//Proceedings of 2018 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2018: 931-948. | 
																													
																							| 9 | YUN J, GOH Y, CHUNG J M. DQN-based optimization framework for secure sharded blockchain systems. IEEE Internet of Things Journal, 2021, 8 (2): 708- 722.  doi: 10.1109/JIOT.2020.3006896
 | 
																													
																							| 10 | ZHANG J T, HONG Z C, QIU X Y, et al. SkyChain: a deep reinforcement learning-empowered dynamic blockchain sharding system[C]//Proceedings of the 49th International Conference on Parallel Processing. New York, USA: ACM Press, 2020: 1-11. | 
																													
																							| 11 | YUAN S J, LI J E, LIANG J H, et al. Sharding for blockchain based mobile edge computing system: a deep reinforcement learning approach[C]//Proceedings of 2021 IEEE Global Communications Conference. Washington D. C., USA: IEEE Press, 2021: 1-6. | 
																													
																							| 12 | 温建伟, 姚冰冰, 万剑雄, 等. 结合深度强化学习的区块链分片系统性能优化. 计算机工程与应用, 2022, 58 (19): 116- 123. | 
																													
																							|  | WEN J W, YAO B B, WAN J X, et al. Performance optimization of blockchain fragmentation system combined with deep reinforcement learning. Computer Engineering and Applications, 2022, 58 (19): 116- 123. | 
																													
																							| 13 | 张立, 段明达, 万剑雄, 等. 车联网区块链吞吐量优化的强化学习方法研究. 计算机科学与探索, 2023, 17 (7): 1708- 1718. | 
																													
																							|  | ZHANG L, DUAN M D, WAN J X, et al. Research on deep reinforcement learning method for throughput optimization of Internet of vehicles blockchain. Journal of Frontiers of Computer Science and Technology, 2023, 17 (7): 1708- 1718. | 
																													
																							| 14 | LIU M T, YU F R, TENG Y L, et al. Performance optimization for blockchain-enabled industrial Internet of Things(IIoT) systems: a deep reinforcement learning approach. IEEE Transactions on Industrial Informatics, 2019, 15 (6): 3559- 3570.  doi: 10.1109/TII.2019.2897805
 | 
																													
																							| 15 | SU Z, WANG Y T, XU Q C, et al. A secure charging scheme for electric vehicles with smart communities in energy blockchain. IEEE Internet of Things Journal, 2019, 6 (3): 4601- 4613.  doi: 10.1109/JIOT.2018.2869297
 | 
																													
																							| 16 | 张亮, 刘百祥, 张如意, 等. 区块链技术综述. 计算机工程, 2019, 45 (5): 1- 12.  doi: 10.19678/j.issn.1000-3428.0053554
 | 
																													
																							|  | ZHANG L, LIU B X, ZHANG R Y, et al. Overview of blockchain technology. Computer Engineering, 2019, 45 (5): 1- 12.  doi: 10.19678/j.issn.1000-3428.0053554
 | 
																													
																							| 17 | YANG Z X, YANG R Z, YU F R, et al. Sharded blockchain for collaborative computing in the Internet of Things: combined of dynamic clustering and deep reinforcement learning approach. IEEE Internet of Things Journal, 2022, 9 (17): 16494- 16509.  doi: 10.1109/JIOT.2022.3152188
 | 
																													
																							| 18 | 陈润宇, 王伦文, 朱然刚. 基于信誉值投票与随机数选举的PBFT共识算法. 计算机工程, 2022, 48 (6): 42-49, 56.  doi: 10.19678/j.issn.1000-3428.0063904
 | 
																													
																							|  | CHEN R Y, WANG L W, ZHU R G. PBFT consensus algorithm based on reputation value voting and random number election. Computer Engineering, 2022, 48 (6): 42-49, 56.  doi: 10.19678/j.issn.1000-3428.0063904
 | 
																													
																							| 19 | HUANG C Y, WANG Z Y, CHEN H X, et al. RepChain: a reputation-based secure, fast, and high incentive blockchain system via sharding. IEEE Internet of Things Journal, 2021, 8 (6): 4291- 4304.  doi: 10.1109/JIOT.2020.3028449
 | 
																													
																							| 20 | SUN W, LEI S Y, WANG L, et al. Adaptive federated learning and digital twin for industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2021, 17 (8): 5605- 5614.  doi: 10.1109/TII.2020.3034674
 | 
																													
																							| 21 | 王思明, 谭北海, 余荣. 面向6G可信可靠智能的区块链分片与激励机制. 计算机科学, 2022, 49 (6): 32- 38. | 
																													
																							|  | WANG S M, TAN B H, YU R. Blockchain sharding and incentive mechanism for 6G dependable intelligence. Computer Science, 2022, 49 (6): 32- 38. | 
																													
																							| 22 | LI Q C, CAO H, WANG S K, et al. A reputation-based multi-user task selection incentive mechanism for crowdsensing. IEEE Access, 2020, 8, 74887- 74900.  doi: 10.1109/ACCESS.2020.2989406
 | 
																													
																							| 23 | XIONG Z H, ZHANG Y, NIYATO D, et al. Deep reinforcement learning for mobile 5G and beyond: fundamentals, applications, and challenges. IEEE Vehicular Technology Magazine, 2019, 14 (2): 44- 52.  doi: 10.1109/MVT.2019.2903655
 | 
																													
																							| 24 |  | 
																													
																							| 25 | LIU M T, TENG Y L, YU F R, et al. Deep reinforcement learning based performance optimization in blockchain-enabled Internet of vehicle[C]//Proceedings of 2019 IEEE International Conference on Communications. Washington D. C., USA: IEEE Press, 2019: 1-6. | 
																													
																							| 26 | BAN T W. An autonomous transmission scheme using dueling DQN for D2D communication networks. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 16348- 16352.  doi: 10.1109/TVT.2020.3041458
 |