| 1 | JAIN A K, DUBES R C. Algorithms for clustering data. Englewood Cliffs, USA: Prentice Hall, Inc., 1988. | 
																													
																							| 2 | NG A, JORDAN M, WEISS Y. On spectral clustering: analysis and an algorithm[C]//Proceeding of International Conference on Neural Information Processing Systems: Natural and Synthetic. Berlin, Germany: Springer, 2001: 1-11. | 
																													
																							| 3 | 宗林林. 多视角聚类研究[D]. 大连: 大连理工大学, 2017. | 
																													
																							|  | ZONG L L. Multi-view clustering research[D]. Dalian: Dalian University of Technology, 2017. (in Chinese) | 
																													
																							| 4 | LI Z L, TANG C, LIU X W, et al. Consensus graph learning for multi-view clustering. IEEE Transactions on Multimedia, 2022, 24, 2461- 2472.  doi: 10.1109/TMM.2021.3081930
 | 
																													
																							| 5 | 范瑞东, 侯臣平. 鲁棒自加权的多视图子空间聚类. 计算机科学与探索, 2021, 15(6): 1062- 1073. | 
																													
																							|  | FAN R D, HOU C P. Robust auto-weighted multi-view subspace clustering. Journal of Frontiers of Computer Science & Technology, 2021, 15(6): 1062- 1073. | 
																													
																							| 6 | SHI S J, NIE F P, WANG R, et al. Fast multi-view clustering via prototype graph. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 443- 455. | 
																													
																							| 7 | 刘改, 吴峰, 刘诗仪. 基于张量图卷积的多视图聚类. 计算机系统应用, 2022, 31(4): 296- 302. | 
																													
																							|  | LIU G, WU F, LIU S Y. Tensor graph convolution networks for multi-view clustering. Computer Systems & Applications, 2022, 31(4): 296- 302. | 
																													
																							| 8 | JIANG G Q, PENG J J, WANG H B, et al. Tensorial multi-view clustering via low-rank constrained high-order graph learning. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 5307- 5318.  doi: 10.1109/TCSVT.2022.3143848
 | 
																													
																							| 9 | XIA R K, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 2149-2155. | 
																													
																							| 10 | WU J L, LIN Z C, ZHA H B. Essential tensor learning for multi-view spectral clustering. IEEE Transactions on Image Processing, 2019, 28(12): 5910- 5922.  doi: 10.1109/TIP.2019.2916740
 | 
																													
																							| 11 | XIE D, GAO Q, DENG S, et al. Multiple graphs learning with a new weighted tensor nuclear norm. Neural Networks, 2021, 133, 57- 68.  doi: 10.1016/j.neunet.2020.10.010
 | 
																													
																							| 12 | ZHAO Y, YUN Y, ZHANG X, et al. Multi-view spectral clustering with adaptive graph learning and tensor schatten p-norm. Neurocomputing, 2022, 468, 257- 264.  doi: 10.1016/j.neucom.2021.09.052
 | 
																													
																							| 13 | 余瑶, 杜世强, 宋金梅. 面向多视图聚类的低秩张量表示学习. 计算机工程与应用, 2022, 58(13): 154- 163. | 
																													
																							|  | YU Y, DU S Q, SONG J M. Low-rank tensor representation learning for multi-view clustering. Computer Engineering and Applications, 2022, 58(13): 154- 163. | 
																													
																							| 14 | LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171- 184.  doi: 10.1109/TPAMI.2012.88
 | 
																													
																							| 15 | PARTRIDGE M, JABRI M. Robust principal component analysis[C]//Proceedings of 2002 IEEE Signal Processing Society Workshop. Washington D. C., USA: IEEE Press, 2002: 289-298. | 
																													
																							| 16 | WANG S, CHEN Y, JIN Y, et al. Error-robust low-rank tensor approximation for multi-view clustering. Knowledge-Based Systems, 2021, 215, 106745.  doi: 10.1016/j.knosys.2021.106745
 | 
																													
																							| 17 | ZHOU D Y, HUANG J Y, SCHÖLKOPF B. Learning from labeled and unlabeled data on a directed graph[C]//Proceedings of the 22nd International Conference on Machine Learning. New York, USA: ACM Press, 2005: 1036-1043. | 
																													
																							| 18 | KILMER M E, MARTIN C D. Factorization strategies for third-order tensors. Linear Algebra and Its Applications, 2011, 435(3): 641- 658.  doi: 10.1016/j.laa.2010.09.020
 | 
																													
																							| 19 | 谢德燕. 基于图学习的多视图聚类[D]. 西安电子科技大学, 2019. | 
																													
																							|  | XIE D Y. Multi-view clustering via graph learning[D]. Xi'an: Xidian University, 2019. (in Chinese) | 
																													
																							| 20 | XIE Y, TAO D C, ZHANG W S, et al. On unifying multi-view self-representations for clustering by tensor multi-rank minimization. International Journal of Computer Vision, 2018, 126(11): 1157- 1179.  doi: 10.1007/s11263-018-1086-2
 | 
																													
																							| 21 | YANG J F, YIN W T, ZHANG Y, et al. A fast algorithm for edge-preserving variational multichannel image restoration. SIAM Journal on Imaging Sciences, 2009, 2(2): 569- 592.  doi: 10.1137/080730421
 | 
																													
																							| 22 | NIE F P, CAI G H, LI X L. Multi-view clustering and semi-supervised classification with adaptive neighbours[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 2408-2414. | 
																													
																							| 23 | CHEN Y Y, XIAO X L, PENG C, et al. Low-rank tensor graph learning for multi-view subspace clustering. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 92- 104.  doi: 10.1109/TCSVT.2021.3055625
 | 
																													
																							| 24 | CHEN Y Y, XIAO X L, HUA Z Y, et al. Adaptive transition probability matrix learning for multiview spectral clustering. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4712- 4726.  doi: 10.1109/TNNLS.2021.3059874
 | 
																													
																							| 25 | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9(11): 2579- 2605. |