| 1 | LI H F, HUANG H K, CHEN L, et al. Adversarial examples for CNN-based SAR image classification: an experience study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1333- 1347.  doi: 10.1109/JSTARS.2020.3038683
 | 
																													
																							| 2 | 陈晓楠, 胡建敏, 张本俊, 等. 基于模型间迁移性的黑盒对抗攻击起点提升方法. 计算机工程, 2021, 47 (8): 162- 169.  URL
 | 
																													
																							|  | CHEN X N, HU J M, ZHANG B J, et al. Black box adversarial attack starting point promotion method based on mobility between models. Computer Engineering, 2021, 47 (8): 162- 169.  URL
 | 
																													
																							| 3 | 柴梦婷, 朱远平. 生成式对抗网络研究与应用进展. 计算机工程, 2019, 45 (9): 222- 234.  URL
 | 
																													
																							|  | CHAI M T, ZHU Y P. Research and application progress of generative adversarial networks. Computer Engineering, 2019, 45 (9): 222- 234.  URL
 | 
																													
																							| 4 | SHEN M, YU H, ZHU L H, et al. Effective and robust physical-world attacks on deep learning face recognition systems. IEEE Transactions on Information Forensics and Security, 2021, 16, 4063- 4077.  doi: 10.1109/TIFS.2021.3102492
 | 
																													
																							| 5 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.  doi: 10.1145/3065386
 | 
																													
																							| 6 |  | 
																													
																							| 7 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1-10. | 
																													
																							| 8 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2017: 4278-4284. | 
																													
																							| 9 | SHARIF M, BHAGAVATULA S, BAUER L, et al. Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition[C]//Proceedings of ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2016: 1528-1540. | 
																													
																							| 10 | 姜妍, 张立国. 面向深度学习模型的对抗攻击与防御方法综述. 计算机工程, 2021, 47 (1): 1- 11.  doi: 10.3969/j.issn.1007-130X.2021.01.001
 | 
																													
																							|  | JIANG Y, ZHANG L G. Survey of adversarial attacks and defense methods for deep learning model. Computer Engineering, 2021, 47 (1): 1- 11.  doi: 10.3969/j.issn.1007-130X.2021.01.001
 | 
																													
																							| 11 |  | 
																													
																							| 12 |  | 
																													
																							| 13 | DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 9185-9193. | 
																													
																							| 14 | ZHANG Y K, JIANG Z Y, VILLALBA J, et al. Black-box attacks on spoofing countermeasures using transferability of adversarial examples[C]//Proceedings of Conference on the International Speech Communication Association. Washington D. C., USA: IEEE Press, 2020: 4238-4242. | 
																													
																							| 15 | TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 1-10. | 
																													
																							| 16 | SUN Y, WANG X G, TANG X O. Deep learning face representation from predicting 10, 000 classes[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 1-10. | 
																													
																							| 17 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778. | 
																													
																							| 18 | HU J E, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141. | 
																													
																							| 19 | WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1-10. | 
																													
																							| 20 | WANG P S, CHENG J. Accelerating convolutional neural networks for mobile applications[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1-10. | 
																													
																							| 21 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: why did you say that? Visual explanations from deep networks via gradient-based localization[EB/OL]. [2022-11-05]. https://arxiv.org/pdf/1610.02391.pdf . | 
																													
																							| 22 | MOOSAVI-DEZFOOLI S M, FAWZI A, FAWZI O, et al. Universal adversarial perturbations[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1765-1773. | 
																													
																							| 23 |  | 
																													
																							| 24 |  | 
																													
																							| 25 | WEI X X, LIANG S Y, CHEN N, et al. Transferable adversarial attacks for image and video object detection[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2019: 954-960. | 
																													
																							| 26 | ZHANG K P, ZHANG Z P, LI Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 2016, 23 (10): 1499- 1503.  doi: 10.1109/LSP.2016.2603342
 |