| 1 | MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2023-05-11]. https://arxiv.org/abs/1602.05629 . | 
																													
																							| 2 | HAMER J, MOHRI M, SURESH A T. FedBoost: communication-efficient algorithms for federated learning[C]//Proceedings of the 37th International Conference on Machine Learning. New York, USA: ACM Press, 2020: 3973-3983. | 
																													
																							| 3 |  | 
																													
																							| 4 | KARIMIREDDY S P, KALE S, MOHRI M, et al. SCAFFOLD: stochastic controlled averaging for on-device federated learning[C]//Proceedings of the 37th International Conference on Machine Learning. New York, USA: ACM Press, 2019: 5132-5143. | 
																													
																							| 5 | LIU L, ZHANG J, SONG S H, et al. Client-edge-cloud hierarchical federated learning[C]//Proceedings of 2020 IEEE International Conference on Communications. Washington D. C., USA: IEEE Press, 2020: 1-6. | 
																													
																							| 6 | HAMMEDI W, BRIK B, SENOUCI S M. Toward optimal MEC-based collision avoidance system for cooperative inland vessels: a federated deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (2): 2525- 2537.  doi: 10.1109/TITS.2022.3154158
 | 
																													
																							| 7 | LI Q B, DIAO Y Q, CHEN Q A, et al. Federated learning on Non-IID data silos: an experimental study[C]//Proceedings of the 38th International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2022: 965-978. | 
																													
																							| 8 | RISTIC B, LA SCALA B, MORELANDE M, et al. Statistical analysis of motion patterns in AIS data: anomaly detection and motion prediction[C]//Proceedings of the 11th International Conference on Information Fusion. Washington D. C., USA: IEEE Press, 2008: 1-7. | 
																													
																							| 9 | PERERA L P, OLIVEIRA P, SOARES C G. Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1188- 1200.  doi: 10.1109/TITS.2012.2187282
 | 
																													
																							| 10 | SHENG P, YIN J B. Extracting shipping route patterns by trajectory clustering model based on automatic identification system data. Sustainability, 2018, 10 (7): 2327.  doi: 10.3390/su10072327
 | 
																													
																							| 11 | WANG L H, CHEN P F, CHEN L Y, et al. Ship AIS trajectory clustering: an HDBSCAN-based approach. Journal of Marine Science and Engineering, 2021, 9 (6): 566.  doi: 10.3390/jmse9060566
 | 
																													
																							| 12 | LEE H T, LEE J S, YANG H, et al. An AIS data-driven approach to analyze the pattern of ship trajectories in ports using the DBSCAN algorithm. Applied Sciences, 2021, 11 (2): 799.  doi: 10.3390/app11020799.2020.03.01614
 | 
																													
																							| 13 | QIAN L, ZHENG Y Z, LI L, et al. A new method of inland water ship trajectory prediction based on long short-term memory network optimized by genetic algorithm. Applied Sciences, 2022, 12 (8): 4073.  doi: 10.3390/app12084073
 | 
																													
																							| 14 | SUO Y F, CHEN W K, CLARAMUNT C, et al. A ship trajectory prediction framework based on a recurrent neural network. Sensors, 2020, 20 (18): 5133.  doi: 10.3390/s20185133
 | 
																													
																							| 15 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2023-05-11]. https://arxiv.org/abs/1412.3555 . | 
																													
																							| 16 | CHEN X A, LIU Y C, ACHUTHAN K, et al. A ship movement classification based on Automatic Identification System(AIS) data using convolutional neural network. Ocean Engineering, 2020, 218, 108182.  doi: 10.1016/j.oceaneng.2020.108182
 | 
																													
																							| 17 | LU J E, LIU A J, DONG F, et al. Learning under concept drift: a review. IEEE Transactions on Knowledge and Data Engineering, 2019, 31 (12): 2346- 2363. | 
																													
																							| 18 |  | 
																													
																							| 19 | SATTLER F, MULLER K R, SAMEK W. Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (8): 3710- 3722.  doi: 10.1109/TNNLS.2020.3015958
 | 
																													
																							| 20 | WU X, PEI J, HAN X H, et al. FedFog: federated learning architecture for Non-IID data. Expert Systems with Applications, 2024, 237, 121390.  doi: 10.1016/j.eswa.2023.121390
 | 
																													
																							| 21 | 陈乃月, 金一, 李浥东, 等. 基于区块链的公平性联邦学习模型. 计算机工程, 2022, 48 (6): 33- 41.  URL
 | 
																													
																							|  | CHEN N Y, JIN Y, LI Y D, et al. Federated learning model with fairness based on blockchain. Computer Engineering, 2022, 48 (6): 33- 41.  URL
 | 
																													
																							| 22 |  | 
																													
																							| 23 | MENDIETA M, YANG T, WANG P, et al. Local learning matters: rethinking data heterogeneity in federated learning[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 8387-8396. | 
																													
																							| 24 |  | 
																													
																							| 25 |  | 
																													
																							| 26 | 温依霖, 赵乃良, 曾艳, 等. 基于本地模型质量的客户端选择方法. 计算机工程, 2023, 49 (6): 131- 143.  URL
 | 
																													
																							|  | WEN Y L, ZHAO N L, ZENG Y, et al. Client selection method based on local model quality. Computer Engineering, 2023, 49 (6): 131- 143.  URL
 |