| 1 | POUYANFAR S, SADIQ S, YAN Y L, et al. A survey on deep learning. ACM Computing Surveys, 2019, 51 (5): 1- 36. | 
																													
																							| 2 | KONEČNÝ J, MCMAHAN H B, RAMAGE D, et al. Federated optimization: distributed machine learning for on-device intelligence[EB/OL]. [2023-01-02]. https://arxiv.org/abs/1610.02527 . | 
																													
																							| 3 | YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications. ACM Transactions on Intelligent Systems and Technology, 2019, 10 (2): 1- 19. | 
																													
																							| 4 | DIAO E M, DING J, TAROKH V. HeteroFL: computation and communication efficient federated learning for heterogeneous clients[EB/OL]. [2023-01-02]. https://arxiv.org/abs/2010.01264 . | 
																													
																							| 5 | 杨强, 刘洋, 程勇. 联邦学习. 北京: 电子工业出版社, 2020. | 
																													
																							|  | YANG Q, LIU Y, CHENG Y. Federated learning. Beijing: Publishing House of Electronics Industry, 2020. | 
																													
																							| 6 | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Ft. Lauderdale, USA: PMLR Press, 2017: 1273-1282. | 
																													
																							| 7 |  | 
																													
																							| 8 | DIAO E, DING J, TAROKH V. SemiFL: communication efficient semi-supervised federated learning with unlabeled clients[EB/OL]. [2023-01-02]. https://arxiv.org/abs/12106.01432 . | 
																													
																							| 9 | MELIS L, SONG C Z, DE CRISTOFARO E, et al. Exploiting unintended feature leakage in collaborative learning[C]//Proceedings of IEEE Symposium on Security and Privacy. Washington D. C., USA: IEEE Press, 2019: 691-706. | 
																													
																							| 10 | KULKARNI V, KULKARNI M, PANT A. Survey of personalization techniques for federated learning[C]//Proceedings of the 4th World Conference on Smart Trends in Systems, Security and Sustainability. Washington D. C., USA: IEEE Press, 2020: 794-797. | 
																													
																							| 11 | DINH C T, TRAN N H, NGUYEN T D. Personalized federated learning with Moreau envelopes[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 21394-21405. | 
																													
																							| 12 | FALLAH A, MOKHTARI A, OZDAGLAR A. Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. Advances in Neural Information Processing Systems, 2020, 33, 3557- 3568. | 
																													
																							| 13 | KHODAK M, BALCAN M F F, TALWALKAR A S. Adaptive gradient-based meta-learning methods. Advances in Neural Information Processing Systems, 2019, 32, 5917- 5928. | 
																													
																							| 14 |  | 
																													
																							| 15 |  | 
																													
																							| 16 |  | 
																													
																							| 17 | LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2020, 2, 429- 450. | 
																													
																							| 18 |  | 
																													
																							| 19 | YAO X, SUN L F. Continual local training for better initialization of federated models[C]//Proceedings of 2020 IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2020: 1736-1740. | 
																													
																							| 20 |  | 
																													
																							| 21 | HUI Z Z, CHEN D J, XU Z H. Federation learning optimization using distillation[C]//Proceedings of 2021 Asia-Pacific Conference on Communications Technology and Computer Science. Washington D. C., USA: IEEE Press, 2021: 25-28. | 
																													
																							| 22 |  | 
																													
																							| 23 | SATTLER F, MÜLLER K R, SAMEK W. Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (8): 3710- 3722. | 
																													
																							| 24 | BRIGGS C, FAN Z, ANDRAS P. Federated learning with hierarchical clustering of local updates to improve training on non-IID data[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2020: 1-9. | 
																													
																							| 25 | WANG H, KAPLAN Z, NIU D, et al. Optimizing federated learning on non-IID data with reinforcement learning[C]//Proceedings of 2020 IEEE Conference on Computer Communications. Washington D. C., USA: IEEE Press, 2020: 1698-1707. | 
																													
																							| 26 |  | 
																													
																							| 27 |  | 
																													
																							| 28 | UDDIN M P, XIANG Y, LU X Q, et al. Mutual information driven federated learning. IEEE Transactions on Parallel and Distributed Systems, 2021, 32 (7): 1526- 1538. | 
																													
																							| 29 | CHEN N Y, LI Y L, LIU X J, et al. A mutual information based federated learning framework for edge computing networks. Computer Communications, 2021, 176, 23- 30.  doi: 10.1016/j.comcom.2021.05.013
 | 
																													
																							| 30 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of International Conference on Machine Learning. New York, USA: PMLR Press, 2017: 1126-1135. | 
																													
																							| 31 |  | 
																													
																							| 32 | DUAN M M, LIU D, JI X Y, et al. FedGroup: efficient clustered federated learning via decomposed data-driven measure[EB/OL]. [2023-01-02]. https://arxiv.org/abs/2010.06870 . | 
																													
																							| 33 | CANG S, YU H N. Mutual information based input feature selection for classification problems. Decision Support Systems, 2012, 54 (1): 691- 698.  doi: 10.1016/j.dss.2012.08.014
 | 
																													
																							| 34 | 王树芬, 张哲, 马士尧, 等. 一种鲁棒的半监督联邦学习系统. 计算机工程, 2022, 48 (6): 107-114, 123  URL
 | 
																													
																							|  | WANG S F, ZHANG Z, MA S Y, et al. A robust semi-supervised federated learning system. Computer Engineering, 2022, 48 (6): 107-114, 123  URL
 | 
																													
																							| 35 | LI Q B, HE B S, SONG D. Model-contrastive federated learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10708-10717. | 
																													
																							| 36 | KORNBLITH S, NOROUZI M, LEE H, et al. Similarity of neural network representations revisited[C]//Proceedings of International Conference on Machine Learning. New York, USA: PMLR Press, 2019: 3519-3529. |