| 1 | 陈燕方, 李志宇, 梁循, 等. 在线社会网络谣言检测综述. 计算机学报, 2018, 41 (7): 1648- 1677.  URL
 | 
																													
																							|  | CHEN Y F, LI Z Y, LIANG X, et al. Review on rumor detection of online social networks. Chinese Journal of Computers, 2018, 41 (7): 1648- 1677.  URL
 | 
																													
																							| 2 | 张仰森, 彭媛媛, 段宇翔, 等. 基于评论异常度的新浪微博谣言识别方法. 自动化学报, 2020, 46 (8): 1689- 1702.  URL
 | 
																													
																							|  | ZHANG Y S, PENG Y Y, DUAN Y X, et al. The method of Sina Weibo rumor detecting based on comment abnormality. Acta Automatica Sinica, 2020, 46 (8): 1689- 1702.  URL
 | 
																													
																							| 3 | XIAO L, ZHANG X L, JING L P, et al. Does head label help for long-tailed multi-label text classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (16): 14103- 14111.  doi: 10.1609/aaai.v35i16.17660
 | 
																													
																							| 4 | DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2023-01-05]. https://arxiv.org/abs/1810.04805 . | 
																													
																							| 5 | SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 4080-4090. | 
																													
																							| 6 | POUYANFAR S, TAO Y D, MOHAN A, et al. Dynamic sampling in convolutional neural networks for imbalanced data classification[C]//Proceedings of IEEE Conference on Multimedia Information Processing and Retrieval. Washington D. C., USA: IEEE Press, 2018: 112-117. | 
																													
																							| 7 | HE H B, GARCIA E A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009, 21 (9): 1263- 1284.  doi: 10.1109/TKDE.2008.239
 | 
																													
																							| 8 | HUANG C, LI Y N, LOY C C, et al. Deep imbalanced learning for face recognition and attribute prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (11): 2781- 2794.  doi: 10.1109/TPAMI.2019.2914680
 | 
																													
																							| 9 | BRANCO P, TORGO L, RIBEIRO R P. A survey of predictive modeling on imbalanced domains. ACM Computing Surveys, 2017, 49 (2): 1- 50. | 
																													
																							| 10 | ZHOU B Y, CUI Q, WEI X S, et al. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9716-9725. | 
																													
																							| 11 | QI H, BROWN M, LOWE D G. Low-shot learning with imprinted weights[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 5822-5830. | 
																													
																							| 12 | YUAN M Q, XU J K, LI Z N. Long tail multi-label learning[C]//Proceedings of IEEE International Conference on Artificial Intelligence and Knowledge Engineering. Washington D. C., USA: IEEE Press, 2019: 28-31. | 
																													
																							| 13 | HARIHARAN B, GIRSHICK R. Low-shot visual recognition by shrinking and hallucinating features[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 3037-3046. | 
																													
																							| 14 | GIDARIS S, KOMODAKIS N. Dynamic few-shot visual learning without forgetting[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4367-4375. | 
																													
																							| 15 | YIN X, YU X, SOHN K, et al. Feature transfer learning for face recognition with under-represented data[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5697-5706. | 
																													
																							| 16 | WANG Y X, RAMANAN D, HEBERT M H. Learning to model the tail [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 7029-7039. | 
																													
																							| 17 | LIU Z W, MIAO Z Q, ZHAN X H, et al. Large-scale long-tailed recognition in an open world[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2532-2541. | 
																													
																							| 18 | ARORA U, PAKA W S, CHAKRABORTY T. Multitask learning for blackmarket tweet detection[C]//Proceedings of 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Washington D. C., USA: IEEE Press, 2019: 127-130. | 
																													
																							| 19 | CHIRIL P, MORICEAU V, BENAMARA F, et al. An annotated corpus for sexism detection in French tweets[C]//Proceedings of the 12th Language Resources and Evaluation Conference. Washington D. C., USA: IEEE Press, 2020: 1397-1403. | 
																													
																							| 20 |  | 
																													
																							| 21 | JAIN A, KASBE A. Fake news detection[C]//Proceedings of IEEE International Students' Conference on Electrical, Electronics and Computer Science. Washington D. C., USA: IEEE Press, 2018: 1-5. | 
																													
																							| 22 |  | 
																													
																							| 23 |  | 
																													
																							| 24 | LI J Y, SUN M S. Scalable term selection for text categorization[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. [S. l. ]: ACL Press, 2007: 774-782. | 
																													
																							| 25 | SHU J, XIE Q, YI L X, et al. Meta-Weight-Net: learning an explicit mapping for sample weighting [C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2019: 1919-1930. | 
																													
																							| 26 | WANG P, HAN K, WEI X S, et al. Contrastive learning based hybrid networks for long-tailed image classification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 943-952. | 
																													
																							| 27 | LI S, GONG K X, LIU C H, et al. MetaSAug: meta semantic augmentation for long-tailed visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 5208-5217. | 
																													
																							| 28 |  |