| 1 |  | 
																													
																							| 2 |  | 
																													
																							| 3 |  | 
																													
																							| 4 |  | 
																													
																							| 5 |  | 
																													
																							| 6 |  | 
																													
																							| 7 |  | 
																													
																							| 8 |  | 
																													
																							| 9 | MCGUINNESS D, VAN HARMELEN F. OWL Web ontology language overview. W3C Recommendation, 2004, 10(10): 2004. | 
																													
																							| 10 | DU X Y. A survey on ontology learning research. Journal of Software, 2006, 17(9): 1837.  doi: 10.1360/jos171837
 | 
																													
																							| 11 | 张凯, 刘京菊. 一种基于知识图谱的威胁路径生成方法. 计算机仿真, 2022, 39(4): 350- 356. | 
																													
																							|  | ZHANG K, LIU J J. A threat path generation method based on knowledge graph. Computer Simulation, 2022, 39(4): 350- 356. | 
																													
																							| 12 | 王硕, 王建华, 汤光明, 等. 一种智能高效的最优渗透路径生成方法. 计算机研究与发展, 2019, 56(5): 929- 941. | 
																													
																							|  | WANG S, WANG J H, TANG G M, et al. Intelligent and efficient method for optimal penetration path generation. Journal of Computer Research and Development, 2019, 56(5): 929- 941. | 
																													
																							| 13 | 杨艳丽, 宋礼鹏. 融合社交网络威胁的攻击图生成方法. 计算机工程, 2021, 47(5): 104- 116.  URL
 | 
																													
																							|  | YANG Y L, SONG L P. Attack graph generation method integrating social network threats. Computer Engineering, 2021, 47(5): 104- 116.  URL
 | 
																													
																							| 14 | 亓玉璐, 江荣, 荣星, 等. 基于网络安全知识图谱的天地一体化信息网络攻击研判框架. 天地一体化信息网络, 2021, 2(3): 57- 65. | 
																													
																							|  | QI Y L, JIANG R, RONG X, et al. Attack analysis framework of space-integrated-ground information network based on cybersecurity knowledge graph. Space-Integrated-Ground Information Networks, 2021, 2(3): 57- 65. | 
																													
																							| 15 | 郭军军, 王乐, 王正源, 等. 软件安全漏洞知识图谱构建方法. 计算机工程与设计, 2022, 43(8): 2137- 2145. | 
																													
																							|  | GUO J J, WANG L, WANG Z Y, et al. Construction method of software security vulnerability knowledge map. Computer Engineering and Design, 2022, 43(8): 2137- 2145. | 
																													
																							| 16 | IANNACONE M, BOHN S, NAKAMURA G, et al. Developing an ontology for cyber security knowledge graphs[C]//Proceedings of the 10th Annual Cyber and Information Security Research Conference. New York, USA: ACM Press, 2015: 1-4. | 
																													
																							| 17 | SYED Z, PADIA A, MATHEWS L M, et al. UCO: a unified cybersecurity ontology[C]//Proceedings of the AAAI Workshop on Artificial Intelligence for Cyber Security. [S. l. ]: AAAI Press, 2016: 1-10. | 
																													
																							| 18 | KIESLING E, EKELHART A, KURNIAWAN K, et al. The SEPSES knowledge graph: an integrated resource for cybersecurity[C]//Proceedings of Conference on International Semantic Web. Berlin, Germany: Springer, 2019: 198-214. | 
																													
																							| 19 | AGHAEI E, SHADID W, AL-SHAER E. ThreatZoom: hierarchical neural network for CVEs to CWEs classification[C]//Proceedings of International Conference on Security and Privacy in Communication Systems. Berlin, Germany: Springer, 2020: 23-41. | 
																													
																							| 20 | AOTA M, BAN T, TAKAHASHI T, et al. Multi-label positive and unlabeled learning and its application to common vulnerabilities and exposure categorization[C]//Proceedings of the 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). Washington D. C., USA: IEEE Press, 2021: 988-996. | 
																													
																							| 21 | LAKHDHAR Y, REKHIS S. Machine learning based approach for the automated mapping of discovered vulnerabilities to adversial tactics[C]//Proceedings of Security and Privacy Workshops. Washington D. C., USA: IEEE Press, 2021: 309-317. | 
																													
																							| 22 | GUO H, CHEN S, XING Z C, et al. Detecting and augmenting missing key aspects in vulnerability descriptions. ACM Transactions on Software Engineering and Methodology, 2022, 31(3): 1- 27. | 
																													
																							| 23 | 鲍开放, 顾君忠, 杨静. 基于结构与文本联合表示的知识图谱补全方法. 计算机工程, 2018, 44(7): 205- 211.  URL
 | 
																													
																							|  | BAO K F, GU J Z, YANG J. Knowledge graph completion method based on jointly representation of structure and text. Computer Engineering, 2018, 44(7): 205- 211.  URL
 | 
																													
																							| 24 | HAN Z B, LI X H, LIU H T, et al. DeepWeak: reasoning common software weaknesses via knowledge graph embedding[C]//Proceedings of the 25th International Conference on Software Analysis, Evolution and Reengineering. Washington D. C., USA: IEEE Press, 2018: 456-466. | 
																													
																							| 25 | XIAO H B, XING Z C, LI X H, et al. Embedding and predicting software security entity relationships: a knowledge graph based approach[C]//Proceedings of Conference on Neural Information Processing Systems. Berlin, Germany: Springer, 2019: 50-63. | 
																													
																							| 26 | YUAN L, BAI Y D, XING Z C, et al. Predicting entity relations across different security databases by using graph attention network[C]//Proceedings of the 45th Annual Computers, Software, and Applications Conference. Washington D. C., USA: IEEE Press, 2021: 834-843. | 
																													
																							| 27 |  | 
																													
																							| 28 |  | 
																													
																							| 29 | NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[EB/OL]. [2023-02-23]. https://arxiv.org/pdf/1712.02121.pdf . | 
																													
																							| 30 | BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013, 2787-2795. | 
																													
																							| 31 |  |