| 1 | 龚俭, 臧小东, 苏琪, 等. 网络安全态势感知综述. 软件学报, 2017, 28(4): 1010- 1026. | 
																													
																							|  | GONG J, ZANG X D, SU Q, et al. Survey of network security situation awareness. Journal of Software, 2017, 28(4): 1010- 1026. | 
																													
																							| 2 | 刘龙霞, 吴军华. 基于分类树和贪心算法的测试数据自动生成方法. 计算机工程与设计, 2011, 32(8): 2734-2736, 2820. | 
																													
																							|  | LIU L X, WU J H. Automated test data generation method based on classification-tree and greedy algorithm. Computer Engineering and Design, 2011, 32(8): 2734-2736, 2820. | 
																													
																							| 3 | BRUNELLO A, MARZANO E, MONTANARI A, et al. Decision tree pruning via multi-objective evolutionary computation. International Journal of Machine Learning and Computing, 2017, 7(6): 167- 175.  doi: 10.18178/ijmlc.2017.7.6.641
 | 
																													
																							| 4 | 焦亚男, 马杰. 一种改进的MEP决策树剪枝算法. 河北工业大学学报, 2019, 48(6): 24- 30. | 
																													
																							|  | JIAO Y N, MA J. An improved MEP decision tree pruning algorithm. Journal of Hebei University of Technology, 2019, 48(6): 24- 30. | 
																													
																							| 5 | 郑伟, 马楠. 一种改进的决策树后剪枝算法. 计算机与数字工程, 2015, 43(6): 960-966, 971. | 
																													
																							|  | ZHENG W, MA N. An improved post-pruning algorithm for decision tree. Computer & Digital Engineering, 2015, 43(6): 960-966, 971. | 
																													
																							| 6 | 周莉, 李静毅. 基于决策树算法的联级网络安全态势感知模型. 计算机仿真, 2021, 38(5): 264- 268. | 
																													
																							|  | ZHOU L, LI J Y. Security situation awareness model of joint network based on decision tree algorithm. Computer Simulation, 2021, 38(5): 264- 268. | 
																													
																							| 7 | 宋万洋, 李国和, 吴卫江, 等. 基于平衡准确率和规模的决策树剪枝算法. 科学技术与工程, 2016, 16(16): 79- 82. | 
																													
																							|  | SONG W Y, LI G H, WU W J, et al. Pruning algorithm of decision tree by balance of accuracy and size. Science Technology and Engineering, 2016, 16(16): 79- 82. | 
																													
																							| 8 | MALIK A J, KHAN F A. A hybrid technique using binary particle swarm optimization and decision tree pruning for network intrusion detection. Cluster Computing, 2018, 21(1): 667- 680.  doi: 10.1007/s10586-017-0971-8
 | 
																													
																							| 9 | SAWANT S S, WIEDMANN M, GÖB S, et al. Compression of deep convolutional neural network using additional importance-weight-based filter pruning approach. Applied Sciences, 2022, 12(21): 11184.  doi: 10.3390/app122111184
 | 
																													
																							| 10 | 于安池, 储茂祥, 杨永辉, 等. 具有强化学习策略的决策树算法. 合肥工业大学学报(自然科学版), 2021, 44(5): 616- 620. | 
																													
																							|  | YU A C, CHU M X, YANG Y H, et al. Decision tree algorithm with reinforcement learning strategy. Journal of Hefei University of Technology(Natural Science), 2021, 44(5): 616- 620. | 
																													
																							| 11 | 吕高锋, 谭靖, 乔冠杰, 等. 决策树报文分类算法. 国防科技大学学报, 2022, 44(3): 184- 193. | 
																													
																							|  | LÜ G F, TAN J, QIAO G J, et al. Decision tree packet classification algorithm. Journal of National University of Defense Technology, 2022, 44(3): 184- 193. | 
																													
																							| 12 | MA L, XIAO H, TAO J, et al. An intelligent approach for reservoir quality evaluation in tight sandstone reservoir using gradient boosting decision tree algorithm. Open Geosciences, 2022, 14(1): 629- 645.  doi: 10.1515/geo-2022-0354
 | 
																													
																							| 13 | CAO Y, WEI W, ZHOU J. Privacy protection data mining algorithm in blockchain based on decision tree classification. Web Intelligence, 2022, 20(2): 103- 112.  doi: 10.3233/WEB-210485
 | 
																													
																							| 14 | PASHAMOKHTARI A, BATISTA G, HABIBI-GHARAKHEILI H. AdIo Tack: quantifying and refining resilience of decision tree ensemble inference models against adversarial volumetric attacks on IoT networks. Computers & Security, 2022, 120, 102801. | 
																													
																							| 15 | CAMPBELL T W, RODER H, GEORGANTAS R W III, et al. Exact Shapley values for local and model-true explanations of decision tree ensembles. Machine Learning with Applications, 2022, 9, 100345.  doi: 10.1016/j.mlwa.2022.100345
 | 
																													
																							| 16 | CHEW Y J, OOI S Y, WONG K S, et al. Adoption of IP truncation in a privacy-based decision tree pruning design: a case study in network intrusion detection system. Electronics, 2022, 11(5): 805.  doi: 10.3390/electronics11050805
 | 
																													
																							| 17 | MEI S, MONTANARI A. The generalization error of random features regression: precise asymptotics and the double descent curve. Communications on Pure and Applied Mathematics, 2021, 75(4): 1- 15. | 
																													
																							| 18 | 程家根, 祁正华, 陈天赋. 基于RBF神经网络的网络安全态势感知. 南京邮电大学学报(自然科学版), 2019, 39(4): 88- 95. | 
																													
																							|  | CHENG J G, QI Z H, CHEN T F. Network security situation awareness based on RBF neural networks. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2019, 39(4): 88- 95. | 
																													
																							| 19 | ZHANG J N. Network security situational awareness based on genetic algorithm in wireless sensor networks[J/OL]. Journal of Sensors: 8292920[2022-11-12].https://doi.org/10.1155/2022/8292920 . | 
																													
																							| 20 | MORDVANYUK N, BIFET A, LÓPEZ B. VEPRECO: vertical databases with pre-pruning strategies and common candidate selection policies to fasten sequential pattern mining. Expert Systems with Applications, 2022, 204, 117517.  doi: 10.1016/j.eswa.2022.117517
 | 
																													
																							| 21 | NAND S, JOSHUA M. CausNet: generational orderings based search for optimal Bayesian networks via dynamic programming with parent set constraints. BMC Bioinformatics, 2023, 24(1): 46.  doi: 10.1186/s12859-023-05159-6
 | 
																													
																							| 22 |  | 
																													
																							| 23 |  | 
																													
																							|  |  | 
																													
																							| 24 | 王曜, 郑列. 一种新的基于聚类的试探性SMOTE算法. 重庆理工大学学报(自然科学版), 2022, 36(4): 187- 195. | 
																													
																							|  | WANG Y, ZHENG L. New tentative SMOTE algorithm based on clustering. Journal of Chongqing University of Technology (Natural Science), 2022, 36(4): 187- 195. | 
																													
																							| 25 | RAO S W, ZOU G P, YANG S Y, et al. Fault diagnosis of power transformers using ANN and SMOTE algorithm. International Journal of Applied Electromagnetics and Mechanics, 2022, 70(4): 345- 355.  doi: 10.3233/JAE-210227
 |