[1] YAGER K G, ZHANG Y G, LU F, et al. Periodic lattices of arbitrary nano-objects:modeling and applications for self-assembled systems[J]. Journal of Applied Crystallography, 2014, 47(1):118-129. [2] 陶举洲.中国散裂中子源小角散射谱仪[J].现代物理知识, 2016, 28(1):18-22. TAO J Z. China spallation neutron source small angle scattering spectrometer[J]. Modern Physics, 2016, 28(1):18-22.(in Chinese) [3] GUO Y M, LIU Y, OERLEMANS A, et al. Deep learning for visual understanding:a review[J]. Neurocomputing, 2016, 187:27-48. [4] SENESI A, LEE B. Small-angle scattering of particle assemblies[J]. Journal of Applied Crystallography, 2015, 48(4):1172-1182. [5] HUANG H, YOO S, KAZNATCHEEV K, et al. Diffusion-based clustering analysis of coherent X-ray scattering patterns of self-assembled nanoparticles[C]//Proceedings of the 29th Annual ACM Symposium on Applied Computing. New York, USA:ACM Press, 2014:85-90. [6] WANG B Y, YAGER K, YU D T, et al. X-ray scattering image classification using deep learning[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Washington D.C., USA:IEEE Press, 2017:697-704. [7] ROBLEDO J I, LIEUTENANT K. Virtual experiments combined with machine learning to improve data evaluation of SANS measurements[EB/OL].[2023-06-11]. https://julib.fz-juelich.de/vufind/RecordJuSER/juser_910115/Details. [8] ZHAO C H, YU W C, LI L B. Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning[J]. Materials&Design, 2023, 228:111828. [9] SAMARAKOON A, TENNANT D A, YE F, et al. Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure[J]. Communications Materials, 2022, 3:84. [10] CHEN S H, WEISS K L, STANLEY C, et al. Structural characterization of an intrinsically disordered protein complex using integrated small-angle neutron scattering and computing[J]. Protein Science:a Publication of the Protein Society, 2023, 32(10):e4772. [11] 谷文俊,张晟恺,邱晓梦,等.基于双模态的小角散射图像结构表征技术研究[J].计算机工程与科学, 2023, 45(8):1443-1452. GU W J, ZHANG S K, QIU X M, et al. Research on bimodal SAXS image structure characterization technique[J]. Computer Engineering⪼ience, 2023, 45(8):1443-1452.(in Chinese) [12] CHEN Y, BAI Y L, ZHANG W, et al. Destruction and construction learning for fine-grained image recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA:IEEE Press, 2019:5157-5166. [13] DU R Y, CHANG D L, BHUNIA A K, et al. Fine-grained visual classification via progressive multi-granularity training of jigsaw patches[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany:Springer, 2020:153-168. [14] KOLESNIKOV A, DOSOVITSKIY A, WEISSENBORN D, et al. An image is worth 16×16 words:Transformers for image recognition at scale[EB/OL].[2023-06-11]. https://arxiv.org/abs/2010.11929. [15] ZANA Y, CESAR R M Jr. Face recognition based on polar frequency features[J]. ACM Transactions on Applied Perception, 2006, 3(1):62-82. [16] HUANG H, SHEN L, ZHANG R, et al. A novel surface registration algorithm with biomedical modeling applications[J]. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(4):474-482. [17] WAN W, ZHONG Y, LI T, et al. Rethinking feature distribution for loss functions in image classification[EB/OL].[2023-06-11]. http://arxiv.org/abs/1803.02988. [18] 秦毅,赵二刚.基于卡方距离度量学习的面部表情识别算法[J].计算机工程与设计, 2022, 43(5):1412-1418. QIN Y, ZHAO E G. Facial expression recognition algorithm based on chi-squared distance metric learning[J]. Computer Engineering and Design, 2022, 43(5):1412-1418.(in Chinese) [19] 陈龙,张建林,彭昊,等.多尺度注意力与领域自适应的小样本图像识别[J].光电工程, 2023, 50(4):67-80. CHEN L, ZHANG J L, PENG H, et al. Few-shot image classification via multi-scale attention and domain adaptation[J]. Opto-Electronic Engineering, 2023, 50(4):67-80.(in Chinese) [20] 陶鹏,冯林,杜彦东,等.面向元余弦损失的少样本图像分类[J].中国图象图形学报, 2024, 29(2):506-519. TAO P, FENG L, DU Y D, et al. Meta-cosine loss for few-shot image classification[J]. Journal of Image and Graphics, 2024, 29(2):506-519.(in Chinese) [21] 何其芳,张群,罗迎,等.正弦调频Fourier-Bessel变换及其在微动目标特征提取中的应用[J].雷达学报, 2018, 7(5):593-601. HE Q F, ZHANG Q, LUO Y, et al. A sinusoidal frequency modulation Fourier-Bessel transform and its application to micro-doppler feature extraction[J]. Journal of Radars, 2018, 7(5):593-601.(in Chinese) [22] GUAN Z, QIN H, YAGER K G, et al. Automatic X-ray scattering image annotation via double-view Fourier-Bessel convolutional networks[EB/OL].[2023-06-11]. https://www3.cs.stonybrook.edu/~qin/research/2018-bmvc-ziqiao-guan.pdf. [23] DE MOL C, DE VITO E, ROSASCO L. Elastic-net regularization in learning theory[J]. Journal of Complexity, 2009, 25(2):201-230. [24] WANG Q, RONNEBERGER O, BURKHARDT H. Fourier analysis in polar and spherical coordinates[EB/OL].[2023-06-11]. https://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf. [25] WRIGHT S J. Coordinate descent algorithms[J]. Mathematical Programming, 2015, 151(1):3-34. [26] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA:IEEE Press, 2016:770-778. |