| 1 | 潘嘉诚, 董一鸿, 陈华辉. 基于图神经网络的自闭症辅助诊断研究综述. 计算机工程, 2022, 48(9): 1- 11.  URL
 | 
																													
																							|  |  PAN J C,  DONG Y H,  CHEN H H. Review of research on auxiliary diagnosis of autism based on graph neural networks. Computer Engineering, 2022, 48(9): 1- 11.  URL
 | 
																													
																							| 2 | 贺煜航, 刘棪, 陈刚. 基于自适应图卷积网络的心电图多标签分类模型. 计算机工程, 2022, 48(12): 261- 269.  URL
 | 
																													
																							|  |  HE Y H,  LIU Y,  CHEN G. Multi-label classification model of electrocardiogram based on adaptive graph convolutional network. Computer Engineering, 2022, 48(12): 261- 269.  URL
 | 
																													
																							| 3 | QIU J Z, CHEN Q B, DONG Y X, et al. GCC: graph contrastive coding for graph neural network pre-training[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 1150-1160. | 
																													
																							| 4 | PENG Z, HUANG W B, LUO M N, et al. Graph representation learning via graphical mutual information maximization[C]//Proceedings of World Wide Web Conference. New York, USA: ACM Press, 2020: 259-270. | 
																													
																							| 5 | ZHU Y Q, XU Y C, YU F, et al. Graph contrastive learning with adaptive augmentation[C]//Proceedings of World Wide Web Conference. New York, USA: ACM Press, 2021: 2069-2080. | 
																													
																							| 6 | YU J X, LI X. Heterogeneous graph contrastive learning with meta-path contexts and weighted negative samples[C]//Proceedings of 2023 SIAM International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2023: 37-45. | 
																													
																							| 7 | WANG Z H, LI Q, YU D H, et al. Heterogeneous graph contrastive multi-view learning[C]//Proceedings of 2023 SIAM International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2023: 136-144. | 
																													
																							| 8 | WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the 28th World Wide Web Conference. New York, USA: ACM Press, 2019: 2022-2032. | 
																													
																							| 9 | FU X Y, ZHANG J N, MENG Z Q, et al. MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of the 29th World Wide Web Conference. New York, USA: ACM Press, 2020: 2331-2341. | 
																													
																							| 10 | ZHU S C, ZHOU C, PAN S R, et al. Relation structure-aware heterogeneous graph neural network[C]//Proceedings of the 19th IEEE International Conference on Data Mining. Piscataway, USA: IEEE Press, 2019: 1534-1539. | 
																													
																							| 11 | ZHANG C X, SONG D J, HUANG C, et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 793-803. | 
																													
																							| 12 | HU Z N, DONG Y X, WANG K S, et al. Heterogeneous graph transformer[C]//Proceedings of World Wide Web Conference. New York, USA: ACM Press, 2020: 2704-2710. | 
																													
																							| 13 |  RAGHAVAN U N,  ALBERT R,  KUMARA S. Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 2007, 76(3): 036106.  doi: 10.1103/PhysRevE.76.036106
 | 
																													
																							| 14 | BELLEIC, ALATTAS H, KAANICHE N. Label-GCN: an effective method for adding label propagation to graph convolutional networks[EB/OL]. [2023-07-01]. https://arxiv.org/pdf/2104.02153 . | 
																													
																							| 15 | SHI Y S, HUANG Z J, FENG S K, et al. Masked label prediction: unified message passing model for semi-supervised classification[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2021: 358-367. | 
																													
																							| 16 |  | 
																													
																							| 17 |  | 
																													
																							| 18 |  | 
																													
																							| 19 |  | 
																													
																							| 20 | HU Z N, DONG Y X, WANG K S, et al. GPT-GNN: generative pre-training of graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 1857-1867. | 
																													
																							| 21 | HASSANI K, AHMADI A H K. Contrastive multi-view representation learning on graphs[C]//Proceedings of the 37th International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2020: 4116-4126. | 
																													
																							| 22 | WANG X, LIU N, HAN H, et al. Self-supervised heterogeneous graph neural network with co-contrastive learning[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2021: 1726-1736. | 
																													
																							| 23 |  DAI Q Y,  LI Q,  TANG J, et al. Adversarial network embedding. Artificial Intelligence, 2018, 32(1): 2167- 2174. | 
																													
																							| 24 |  SUN Z C,  YIN H Z,  CHEN H X, et al. Disease prediction via graph neural networks. IEEE Journal of Biomedical and Health Informatics, 2021, 25(3): 818- 826.  doi: 10.1109/JBHI.2020.3004143
 | 
																													
																							| 25 |  ZHENG S,  ZHU Z F,  LIU Z Z, et al. Multi-modal graph learning for disease prediction. IEEE Transactions on Medical Imaging, 2022, 41(9): 2207- 2216.  doi: 10.1109/TMI.2022.3159264
 | 
																													
																							| 26 | LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 7871-7880. | 
																													
																							| 27 |  YANG Y M,  GUAN Z Y,  LI J X, et al. Interpretable and efficient heterogeneous graph convolutional network. IEEE Transactions on Knowledge and Data Engineering, 2021, 23(1): 1637- 1650. | 
																													
																							| 28 |  | 
																													
																							| 29 |  JOHNSON A E W,  POLLARD T J,  SHEN L, et al. MIMIC-Ⅲ, a freely accessible critical care database. Scientific Data, 2016, 3(1): 160035.  doi: 10.1038/sdata.2016.35
 | 
																													
																							| 30 | VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of IEEE International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2017: 581-596. | 
																													
																							| 31 | DONG Y X, CHAWLA N V, SWAMI A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 381-398. | 
																													
																							| 32 | KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of IEEE International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2014: 235-246. | 
																													
																							| 33 |  VEN DER MAATEN V,  HINTON G. 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research, 2008, 9, 2579- 2605. |