| 1 | WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2017: 3645-3649. | 
																													
																							| 2 | ZHANG Y F, SUN P Z, JIANG Y, et al. ByteTrack: multi-object tracking by associating every detection box[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 1-21. | 
																													
																							| 3 | CHEN L H, SU C W, HSIAO H A. Player trajectory reconstruction for tactical analysis. Multimedia Tools and Applications, 2018, 77(23): 30475- 30486.  doi: 10.1007/s11042-018-6164-5
 | 
																													
																							| 4 | SEMPAU J, WILDERMAN S J, BIELAJEW A F. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Physics in Medicine & Biology, 2000, 45(8): 2263- 2291. | 
																													
																							| 5 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: ACM Press, 2014: 580-587. | 
																													
																							| 6 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 779-788. | 
																													
																							| 7 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 7263-7271. | 
																													
																							| 8 | ZHAO L Q, LI S Y. Object detection algorithm based on improved YOLOv3. Electronics, 2020, 9(3): 537.  doi: 10.3390/electronics9030537
 | 
																													
																							| 9 | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 2117-2125. | 
																													
																							| 10 |  | 
																													
																							| 11 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768. | 
																													
																							| 12 | 吴珊, 周凤. 基于改进SSD算法的小目标检测. 计算机工程, 2023, 49(7): 179-188, 195.  URL
 | 
																													
																							|  | WU S, ZHOU F. Small target detection based on improved SSD algorithm. Computer Engineering, 2023, 49(7): 179-188, 195.  URL
 | 
																													
																							| 13 | 宋华伟, 屈晓娟, 杨欣, 等. 基于改进YOLOv5的火焰烟雾检测. 计算机工程, 2023, 49(6): 250- 256.  URL
 | 
																													
																							|  | SONG H W, QU X J, YANG X, et al. Flame and smoke detection based on improved YOLOv5. Computer Engineering, 2023, 49(6): 250- 256.  URL
 | 
																													
																							| 14 | KATHAROPOULOS A, VYAS A, PAPPAS N, et al. Transformers are RNNs: fast autoregressive transformers with linear attention[EB/OL]. [2023-06-20]. http://arxiv.org/abs/2006.16236v3 . | 
																													
																							| 15 | COLIN R, NOAM S, ADAM R, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 2020, 21(1): 5485- 5551. | 
																													
																							| 16 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of NIPS'17. Cambridge, USA: MIT Press, 2017: 30-41. | 
																													
																							| 17 |  | 
																													
																							| 18 | ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression. Neurocomputing, 2022, 506, 146- 157.  doi: 10.1016/j.neucom.2022.07.042
 | 
																													
																							| 19 | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 4510-4520. | 
																													
																							| 20 | CAI H, GAN C, HAN S. EfficientViT: enhanced linear attention for high-resolution low-computation visual recognition[EB/OL]. [2023-06-20]. http://arxiv.org/abs/2205.14756 , 2022. | 
																													
																							| 21 | MSONDA P, UYMAZ S A, KARAAGAC S S. Spatial pyramid pooling in deep convolutional networks for automatic tuberculosis diagnosis. Traitement Du Signal, 2020, 37(6): 1075- 1084.  doi: 10.18280/ts.370620
 | 
																													
																							| 22 | ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 2022, 52(8): 8574- 8586.  doi: 10.1109/TCYB.2021.3095305
 | 
																													
																							| 23 | CUI Y T, ZENG C K, ZHAO X Y, et al. SportsMOT: a large multi-object tracking dataset in multiple sports scenes[EB/OL]. [2023-06-20]. http://arxiv.org/abs/2304.05170v2 . | 
																													
																							| 24 |  | 
																													
																							| 25 | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 6848-6856. | 
																													
																							| 26 | LI Y, YUAN G, WEN Y, et al. EfficientFormer: vision transformers at mobilenet speed. Information Processing Systems, 2022, 35, 12934- 12949. | 
																													
																							| 27 | YU W H, LUO M, ZHOU P, et al. MetaFormer is actually what you need for vision[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 10819-10829. |