| 1 | 刘泽. 自动驾驶汽车多源异构传感器环境感知方法研究[D]. 镇江: 江苏大学, 2022. | 
																													
																							|  | LIU Z. Research on environment perception method of multi-source heterogeneous sensors for autonomous vehicle[D]. Zhenjiang: Jiangsu University, 2022. (in Chinese) | 
																													
																							| 2 | 张珊. 基于多源数据融合的三维目标检测研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. | 
																													
																							|  | ZHANG S. Research on 3D target detection based on multi-source data fusion[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese) | 
																													
																							| 3 | TAN H J, OU D X, ZHANG L, et al. Infrared sensation-based salient targets enhancement methods in low-visibility scenes. Sensors, 2022, 22 (15): 5835.  doi: 10.3390/s22155835
 | 
																													
																							| 4 |  | 
																													
																							| 5 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778. | 
																													
																							| 6 | DAYAL A, AISHWARYA M, ABHILASH S, et al. Adversarial unsupervised domain adaptation for hand gesture recognition using thermal images. IEEE Sensors Journal, 2023, 23 (4): 3493- 3504.  doi: 10.1109/JSEN.2023.3235379
 | 
																													
																							| 7 | AKKAYA I B, ALTINEL F, HALICI U. Self-training guided adversarial domain adaptation for thermal imagery[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 4317-4326. | 
																													
																							| 8 | KIM Y H, SHIN U, PARK J, et al. MS-UDA: multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. IEEE Robotics and Automation Letters, 2021, 6 (4): 6497- 6504.  doi: 10.1109/LRA.2021.3093652
 | 
																													
																							| 9 | USTUN B, KAYA A K, CAKIR A, et al. Spectral transfer guided active domain adaptation for thermal imagery[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 449. | 
																													
																							| 10 |  | 
																													
																							| 11 | MARNISSI M A, FRADI H, SAHBANI A, et al. Unsupervised thermal-to-visible domain adaptation method for pedestrian detection. Pattern Recognition Letters, 2022, 153 (C): 222- 231. | 
																													
																							| 12 |  | 
																													
																							| 13 | VS V, POSTER D, YOU S Y, et al. Meta-UDA: unsupervised domain adaptive thermal object detection using meta-learning[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2022: 3697. | 
																													
																							| 14 | KIEU M, BAGDANOV A D, BERTINI M. Bottom-up and layerwise domain adaptation for pedestrian detection in thermal images[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 17(1): 32. | 
																													
																							| 15 | KIEU M, BAGDANOV A D, BERTINI M, et al. Domain adaptation for privacy-preserving pedestrian detection in thermal imagery[C]//Proceedings of International Conference on Image Analysis and Processing. Berlin, Germany: Springer, 2019: 203-213. | 
																													
																							| 16 | GRAZIANI M, ANDREARCZYK V, MÜLLER H. Visualizing and interpreting feature reuse of pretrained CNNs for histopathology[C]//Proceedings of IMVIP 2019: Irish Machine Vision and Image Processing Conference Proceedings. Dublin, Ireland: Technological University Dublin, 2019: 28. | 
																													
																							| 17 | HERRMANN C, RUF M, BEYERER J, et al. CNN-based thermal infrared person detection by domain adaptation[M]//MICHAEL C D. Autonomous systems: sensors, vehicles, security, and the internet of everything. Orlando, USA: SPIE, 2018: 38-43. | 
																													
																							| 18 | GUO T T, HUYNH C P, SOLH M. Domain-adaptive pedestrian detection in thermal images[C]//Proceedings of the IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2019: 1660-1664. | 
																													
																							| 19 |  | 
																													
																							| 20 |  | 
																													
																							| 21 | PRAJAPATI K, CHUDASAMA V, PATEL H, et al. Channel split convolutional neural network(ChaSNet) for thermal image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 4363-4372. | 
																													
																							| 22 | DU J M, LU H Z, HU M F, et al. CNN-based infrared dim small target detection algorithm using target-oriented shallow-deep features and effective small anchor. IET Image Processing, 2021, 15 (1): 1- 15.  doi: 10.1049/ipr2.12001
 | 
																													
																							| 23 |  | 
																													
																							| 24 | XU M J, QIN L Y, CHEN W J, et al. Multi-view adversarial discriminator: mine the non-causal factors for object detection in unseen domains[EB/OL]. [2023-13-17]. https://arxiv.org/pdf/2304.02950.pdf . | 
																													
																							| 25 | 章永来, 周耀鉴. 聚类算法综述. 计算机应用, 2019, 39 (7): 1869- 1882.  URL
 | 
																													
																							|  | ZHANG Y L, ZHOU Y J. Review of clustering algorithms. Journal of Computer Applications, 2019, 39 (7): 1869- 1882.  URL
 |