| [1] LI Z J, ZHOU Z W, JIANG N, et al. Spatial preserved graph convolution networks for person re-identification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications,2020,16(1s):26. [2] XU J, ZHAO R, ZHU F, et al. Attention-aware compositional network for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:2119-2128.
 [3] ZHU K, GUO H Y, LIU Z W, et al. Identity-guided human semantic parsing for person re-identification[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany:Springer, 2020:346-363.
 [4] LIAO S C, HU Y, ZHU X Y, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2015:2197-2206.
 [5] ZHAO H Y, TIAN M Q, SUN S Y, et al. Spindle net:person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:907-915.
 [6] KALAYEH M M, BASARAN E, GÖKMEN M, et al. Human semantic parsing for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:1062-1071.
 [7] SONG C F, HUANG Y, OUYANG W L, et al. Mask-guided contrastive attention model for person re-identification[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:1179-1188.
 [8] TIAN M Q, YI S, LI H S, et al. Eliminating background-bias for robust person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:5794-5803.
 [9] YANG W J, HUANG H J, ZHANG Z, et al. Towards rich feature discovery with class activation maps augmentation for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2019:1389-1398.
 [10] LI D W, CHEN X T, ZHANG Z, et al. Learning deep context-aware features over body and latent parts for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:7398-7407.
 [11] 刘晓蓉,李小霞,秦昌辉.融合多尺度对比池化特征的行人重识别方法[J].计算机工程, 2022, 48(4):292-298. LIU X R, LI X X, QIN C H. Person re-identification method with multi-scale contrast pooling feature[J]. Computer Engineering, 2022, 48(4):292-298.(in Chinese)
 [12] 符进武,范自柱,石林瑞,等.基于多尺度多粒度融合的行人重识别方法[J].计算机工程, 2022, 48(3):271-279. FU J W, FAN Z Z, SHI L R, et al. Person re-identification method based on multi-scale and multi-granularity fusion[J]. Computer Engineering, 2022, 48(3):271-279.(in Chinese)
 [13] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany:Springer, 2015:234-241.
 [14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA:IEEE Press, 2016:770-778.
 [15] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification:a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2015:1116-1124.
 [16] ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA:IEEE Press, 2017:3774-3782.
 [17] GRAY D, TAO H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2008:262-275.
 [18] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Berlin, Germany:Springer, 2018:7132-7141.
 [19] TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. MLP-Mixer:an all-MLP architecture for vision[EB/OL].[2023-07-25]. http://arxiv.org/abs/2105.01601.
 [20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2023-07-25]. https://arxiv.org/pdf/1409.1556.
 [21] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA:IEEE Press, 2016:2818-2826.
 [22] SUN Y F, ZHENG L, YANG Y, et al. Beyond part models:person retrieval with refined part pooling (and A strong convolutional baseline)[C]//Proceedings of the 15th European Conference Computer Vision. Berlin, Germany:Springer, 2018:501-518.
 [23] HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[EB/OL].[2023-07-25]. https://arxiv.org/pdf/1703.07737.
 [24] SUN Y F, ZHENG L, DENG W J, et al. SVDNet for pedestrian retrieval[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA:IEEE Press, 2017:3820-3828.
 [25] YANG W X, YAN Y, CHEN S. Adaptive deep metric embeddings for person re-identification under occlusions[J]. Neurocomputing, 2019, 340:125-132.
 [26] HONG P X, WU T, WU A C, et al. Fine-grained shape-appearance mutual learning for cloth-changing person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA:IEEE Press, 2021:10508-10517.
 [27] ZHENG Z D, ZHENG L, YANG Y. Pedestrian alignment network for large-scale person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(10):3037-3045.
 [28] GARY B. The Opencv Library[J]. Dr. Dobb's Journal:Software Tools for the Professional Programmer, 2000, 25(11):120-123.
 |