1 |
董文轩, 梁宏涛, 刘国柱, 等. 深度卷积应用于目标检测算法综述. 计算机科学与探索, 2022, 16(5): 1025- 1042.
|
|
DONG W X, LIANG H T, LIU G Z, et al. Review of deep convolution applied to target detection algorithms. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1025- 1042.
|
2 |
刘洪江, 王懋, 刘丽华, 等. 基于深度学习的小目标检测综述. 计算机工程与科学, 2021, 43(8): 1429- 1442.
|
|
LIU H J, WANG M, LIU L H, et al. A survey of small object detection based on deep learning. Computer Engineering & Science, 2021, 43(8): 1429- 1442.
|
3 |
HINTON G E, SALAKHUTDINOV R R. Reducing thedimensionality of data with neural networks. Science, 2006, 313(5786): 504- 507.
doi: 10.1126/science.1127647
|
4 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Richfeature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 580-587.
|
5 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
6 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
7 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6154-6162.
|
8 |
CAO J L, CHOLAKKAL H, ANWER R M, et al. D2Det: towards high quality object detection and instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11482-11491.
|
9 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]. Berlin, Germany: Springer, 2016.
|
10 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
11 |
刘人玮, 李天昀, 张浩庭, 等. 基于YOLOX的跳频信号检测. 电讯技术, 2023, 63(7): 933- 940.
|
|
LIU R W, LI T Y, ZHANG H T, et al. Frequency hopping signal detection based on YOLOX. Telecommunication Engineering, 2023, 63(7): 933- 940.
|
12 |
|
13 |
LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-07-10]. https://arxiv.org/abs/2209.02976.
|
14 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-07-10]. https://arxiv.org/abs/2207.02696.
|
15 |
|
16 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 236-248.
|
17 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2020: 1577-1586.
|
18 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 6848-6856.
|
19 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
20 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2023-07-10]. https://arxiv.org/abs/2010.11929.
|
21 |
PAN X R, GE C J, LU R, et al. On the integration of self-attention and convolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 815-825.
|
22 |
JAIN A, MISHRA A, SHUKLA A, et al. A novel genetically optimized convolutional neural network for traffic sign recognition: a new benchmark on Belgium and Chinese traffic sign datasets. Neural Processing Letters, 2019, 50(3): 3019- 3043.
doi: 10.1007/s11063-019-09991-x
|
23 |
HOUBEN S, STALLKAMP J, SALMEN J, et al. Detection of traffic signs in real-world images: the German traffic sign detection benchmark[C]//Proceedings of 2013 International Joint Conference on Neural Networks. Dallas, USA: IEEE Press, 2013: 761-769.
|
24 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2020: 10781-10790.
|
25 |
|
26 |
|
27 |
SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE Press, 2021: 16519-16529.
|
28 |
|
29 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module. Berlin, Germany: Springer, 2018.
|
30 |
刘紫燕, 袁磊, 朱明成, 等. 融合SPP和改进FPN的YOLOv3交通标志检测. 计算机工程与应用, 2021, 57(7): 164- 170.
|
|
LIU Z Y, YUAN L, ZHU M C, et al. YOLOv3 traffic sign detection based on SPP and improved FPN. Computer Engineering and Applications, 2021, 57(7): 164- 170.
|
31 |
王卜, 何扬. 基于改进YOLOv3的交通标志检测. 四川大学学报(自然科学版), 2022, 59(1): 57- 67.
|
|
WANG B, HE Y. Traffic sign detection based on improved YOLOv3. Journal of Sichuan University(Natural Science Edition), 2022, 59(1): 57- 67.
|
32 |
ZHU Z, LIANG D, ZHANG S H, et al. Traffic-sign detection and classification in the wild[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 2110-2118.
|
33 |
陈梦涛, 余粟. 基于改进YOLOV4模型的交通标志识别研究. 微电子学与计算机, 2022, 39(1): 17- 25.
|
|
CHEN M T, YU S. Research on traffic sign recognitionbased on improved YOLOV4 model. Microelectronics & Computer, 2022, 39(1): 17- 25.
|
34 |
熊恩杰, 张荣芬, 刘宇红, 等. 面向交通标志的Ghost-YOLOv8检测算法. 计算机工程与应用, 2023, 59(20): 200- 207.
|
|
XIONG E J, ZHANG R F, LIU Y H, et al. Ghost-YOLOv8 detection algorithm for traffic signs. Computer Engineering and Applications, 2023, 59(20): 200- 207.
|
35 |
REN K, HUANG L, FAN C Q, et al. Real-time traffic sign detection network using DS-DetNet and lite fusion FPN. Journal of Real-Time Image Processing, 2021, 18(6): 2181- 2191.
|
36 |
LIU F, QIAN Y R, LI H, et al. CAFFNet: channel attention and feature fusion network for multi-target traffic sign detection. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35(7): 2152008.
|
37 |
WEI H Y, ZHANG Q Q, QIAN Y R, et al. MTSDet: multi-scale traffic sign detection with attention and path aggregation. Applied Intelligence, 2023, 53(1): 238- 250.
|