1 |
|
2 |
BIEL L , PETTERSSON O , PHILIPSON L , et al. ECG analysis: a new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 2001, 50 (3): 808- 812.
doi: 10.1109/19.930458
|
3 |
汪莉. 基于ECG信号的身份识别技术研究[D]. 济南: 山东大学, 2005.
|
|
WANG L. Research on identity recognition technology based on ECG signal[D]. Jinan: Shandong University, 2005. (in Chinese)
|
4 |
SILVA H P D, GAMBOA H, FRED A. Applicability of lead V2 ECG measurements in biometrics[C]//Proceedings of Mede-Tel'07. Washington D. C., USA: IEEE Press, 2007: 177-180.
|
5 |
GAHI Y, LAMRANI M, ZOGLAT A, et al. Biometric identification system based on electrocardiogram data[C]//Proceedings of Conference on New Technologies, Mobility and Security. Washington D. C., USA: IEEE Press, 2008: 1-5.
|
6 |
贺煜航, 刘棪, 陈刚. 基于自适应图卷积网络的心电图多标签分类模型. 计算机工程, 2022, 48 (12): 261- 269.
URL
|
|
HE Y H , LIU Y , CHEN G . Multi-label classification model of electrocardiogram based on adaptive graph convolutional network. Computer Engineering, 2022, 48 (12): 261- 269.
URL
|
7 |
CHEN C Y , LIN Y T , LEE S J , et al. Automated ECG classification based on 1D deep learning network. Methods, 2022, 202, 127- 135.
doi: 10.1016/j.ymeth.2021.04.021
|
8 |
MELZI P , TOLOSANA R , VERA-RODRIGUEZ R . ECG biometric recognition: review, system proposal, and benchmark evaluation. IEEE Access, 2023, 11, 15555- 15566.
doi: 10.1109/ACCESS.2023.3244651
|
9 |
ALEIDAN A A , ABBAS Q , DAADAA Y , et al. Biometric-based human identification using ensemble-based technique and ECG signals. Applied Sciences, 2023, 13 (16): 9454.
doi: 10.3390/app13169454
|
10 |
颜菲, 胡玉平. 叠加去噪自动编码器结合深度神经网络的心电图信号分类方法. 计算机应用与软件, 2019, 36 (4): 178- 185.
|
|
YAN F , HU Y P . Electrocardiogram signals classification method based on stacked denoising AutoEncodercombined with deep neural network algorithm. Computer Applications and Software, 2019, 36 (4): 178- 185.
|
11 |
WANG D , SI Y J , YANG W Y , et al. A novel electrocardiogram biometric identification method based on temporal-frequency autoencoding. Electronics, 2019, 8 (6): 667.
doi: 10.3390/electronics8060667
|
12 |
JUN S , SZMAJDA M , KHOMA V , et al. Comparison of methods for correcting outliers in ECG-based biometric identification. Metrology and Measurement Systems, 2020, 18 (5): 387- 398.
|
13 |
SUN L , ZHONG Z Y , QU Z G , et al. PerAE: an effective personalized AutoEncoder for ECG-based biometric in augmented reality system. IEEE Journal of Biomedical and Health Informatics, 2022, 26 (6): 2435- 2446.
doi: 10.1109/JBHI.2022.3145999
|
14 |
SILVA R , FRED A , PLÁCIDO DA SILVA H . Morphological AutoEncoders for beat-by-beat atrial fibrillation detection using single-lead ECG. Sensors, 2023, 23 (5): 2854.
doi: 10.3390/s23052854
|
15 |
卢莉蓉, 王鉴, 牛晓东, 等. 基于心动周期和经验模式分解的心电信号去噪处理. 数据采集与处理, 2020, 35 (4): 702- 710.
|
|
LU L R , WANG J , NIU X D , et al. Electrocardiogram signal denoising based on cardiac cycle and empirical mode decomposition. Journal of Data Acquisition and Processing, 2020, 35 (4): 702- 710.
|
16 |
邵伟. 基于深度学习的ECG身份识别研究[D]. 长春: 吉林大学, 2021.
|
|
SHAO W. Research on ECG identity recognition based on deep learning[D]. Changchun: Jilin University, 2021. (in Chinese)
|
17 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 770-778.
|
18 |
CHU Y F , SHEN H B , HUANG K J . ECG authentication method based on parallel multi-scale one-dimensional residual network with center and margin loss. IEEE Access, 2019, 7, 51598- 51607.
doi: 10.1109/ACCESS.2019.2912519
|
19 |
BELO D , BENTO N , SILVA H , et al. ECG biometrics using deep learning and relative score threshold classification. Sensors, 2020, 20 (15): 4078.
doi: 10.3390/s20154078
|
20 |
EL BOUJNOUNI I , ZILI H , TALI A , et al. A wavelet-based capsule neural network for ECG biometric identification. Biomedical Signal Processing and Control, 2022, 76, 103692.
doi: 10.1016/j.bspc.2022.103692
|
21 |
MELTZER D , LUENGO D . Efficient Clustering-based electrocardiographic biometric identification. Expert Systems with Applications, 2023, 219, 119609.
doi: 10.1016/j.eswa.2023.119609
|
22 |
KIM Y , CHOI G , CHOI C . One-dimensional shallow neural network using non-fiducial based segmented electrocardiogram for user identification system. IEEE Access, 2023, 11, 102483- 102491.
|
23 |
姚嘉伟, 蔡延光. 基于多核卷积和多头自注意力的心电图身份识别方法. 自动化与信息工程, 2023, 44 (5): 32- 37.
|
|
YAO J W , CAI Y G . ECG identity recognition method based on multi-kernel convolution and multi-head self-attention. Automation[WT《Times New Roman》]& Information Engineering, 2023, 44 (5): 32- 37.
|
24 |
ZHANG X , LIU Q F , HE D , et al. Electrocardiogram-based biometric identification using mixed feature extraction and sparse representation. Sensors, 2023, 23 (22): 9179.
|
25 |
CAMARA C , PERIS-LOPEZ P , SAFKHANI M , et al. ECG identification based on the gramian angular field and tested with individuals in resting and activity states. Sensors, 2023, 23 (2): 937.
|