1 |
XIONG D Z , ZHANG D H , ZHAO X G , et al. Deep learning for EMG-based human-machine interaction: a review. CAA Journal of Automatica Sinica, 2021, 8 (3): 512- 533.
|
2 |
BI L Z , FELEKE A , GUAN C T . A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration. Biomedical Signal Processing and Control, 2019, 51, 113- 127.
doi: 10.1016/j.bspc.2019.02.011
|
3 |
SUN X H , DING J Y , DONG Y X , et al. A survey of technologies facilitating home and community-based stroke rehabilitation. International Journal of Human-Computer Interaction, 2023, 39 (5): 1016- 1042.
doi: 10.1080/10447318.2022.2050545
|
4 |
李自由, 赵新刚, 张弼, 等. 基于表面肌电的意图识别方法在非理想条件下的研究进展. 自动化学报, 2021, 47 (5): 955- 969.
|
|
LI Z Y , ZHAO X G , ZHANG B , et al. Review of sEMG-based motion intent recognition methods in non-ideal conditions. Acta Automatica Sinica, 2021, 47 (5): 955- 969.
|
5 |
陶建华, 龚江涛, 高楠, 等. 面向虚实融合的人机交互. 中国图象图形学报, 2023, 28 (6): 1513- 1542.
|
|
TAO J H , GONG J T , GAO N , et al. Human-computer interaction for virtual-real fusion. Journal of Image and Graphics, 2023, 28 (6): 1513- 1542.
|
6 |
宋爱国, 胡旭晖, 祝佳航. 智能肌电控制假手研究进展. 南京信息工程大学学报, 2019, 11 (2): 127- 137.
|
|
SONG A G , HU X H , ZHU J H . Research progress on intelligent myoelectric control prosthesis. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2019, 11 (2): 127- 137.
|
7 |
丁其川, 熊安斌, 赵新刚, 等. 基于表面肌电的运动意图识别方法研究及应用综述. 自动化学报, 2016, 42 (1): 13- 25.
|
|
DING Q C , XIONG A B , ZHAO X G , et al. A review on researches and applications of sEMG-based motion intent recognition methods. Acta Automatica Sinica, 2016, 42 (1): 13- 25.
|
8 |
孙志军, 薛磊, 许阳明, 等. 深度学习研究综述. 计算机应用研究, 2012, 29 (8): 2806- 2810.
doi: 10.3969/j.issn.1001-3695.2012.08.002
|
|
SUN Z J , XUE L , XU Y M , et al. Overview of deep learning. Application Research of Computers, 2012, 29 (8): 2806- 2810.
doi: 10.3969/j.issn.1001-3695.2012.08.002
|
9 |
庄福振, 罗平, 何清, 等. 迁移学习研究进展. 软件学报, 2014, 26 (1): 26- 39.
|
|
ZHUANG F Z , LUO P , HE Q , et al. Survey on transfer learning research. Journal of Software, 2014, 26 (1): 26- 39.
|
10 |
YOUSEFI J , HAMILTON-WRIGHT A . Characterizing EMG data using machine-learning tools. Computers in Biology and Medicine, 2014, 51, 1- 13.
doi: 10.1016/j.compbiomed.2014.04.018
|
11 |
ERICSSON L, GOUK H, HOSPEDALES T M. How well do self-supervised models transfer?[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE Press, 2021: 5414-5423.
|
12 |
李自由, 赵新刚, 张弼, 等. 基于表面肌电的意图识别方法在非理想条件下的研究进展. 自动化学报, 2021, 47 (5): 955- 969.
|
|
LI Z Y , ZHAO X G , ZHANG B , et al. Review of sEMG-based motion intent recognition methods in non-ideal conditions. Acta Automatica Sinica, 2021, 47 (5): 955- 969.
|
13 |
ZHUANG F Z , QI Z Y , DUAN K Y , et al. A comprehensive survey on transfer learning. Proceedings of the IEEE, 2021, 109 (1): 43- 76.
doi: 10.1109/JPROC.2020.3004555
|
14 |
DAY O , KHOSHGOFTAAR T M . A survey on heterogeneous transfer learning. Journal of Big Data, 2017, 4 (1): 29.
doi: 10.1186/s40537-017-0089-0
|
15 |
WANG M , DENG W H . Deep visual domain adaptation: a survey. Neurocomputing, 2018, 312, 135- 153.
doi: 10.1016/j.neucom.2018.05.083
|
16 |
FARAHANI A , VOGHOEI S , RASHEED K , et al. A brief review of domain adaptation. Berlin, Germany: Springer, 2021.
|
17 |
PAN S J , YANG Q . A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22 (10): 1345- 1359.
doi: 10.1109/TKDE.2009.191
|
18 |
赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述. 软件学报, 2020, 32 (2): 349- 369.
|
|
ZHAO K L , JIN X L , WANG Y Z , et al. Survey on few-shot learning. Journal of Software, 2020, 32 (2): 349- 369.
|
19 |
黎英, 宋佩华. 迁移学习在医学图像分类中的研究进展. 中国图象图形学报, 2022, 27 (3): 672- 686.
|
|
LI Y , SONG P H . Review of transfer learning in medical image classification. Journal of Image and Graphics, 2022, 27 (3): 672- 686.
|
20 |
YOU K, LIU Y, WANG J, et al. Logme: practical assessment of pre-trained models for transfer learning[C]//Proceedings of IEEE/CVF International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2021: 12133-12143.
|
21 |
|
22 |
KIM K T , GUAN C T , LEE S W . A subject-transfer framework based on single-trial EMG analysis using convolutional neural networks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28 (1): 94- 103.
doi: 10.1109/TNSRE.2019.2946625
|
23 |
CHEN X , LI Y , HU R , et al. Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method. IEEE Journal of Biomedical and Health Informatics, 2021, 25 (4): 1292- 1304.
doi: 10.1109/JBHI.2020.3009383
|
24 |
张应祥, 位少聪, 张茜茜, 等. 基于迁移学习的表面肌电信号手势识别. 南京理工大学学报(自然科学版), 2023, 47 (3): 304- 310.
|
|
ZHANG Y X , WEI S C , ZHANG Q Q , et al. Surface electromyographic signal hand gesture recognition based on transfer learning. Journal of Nanjing University of Science and Technology, 2023, 47 (3): 304- 310.
|
25 |
KRASOULIS A , KYRANOU I , ERDEN M S , et al. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements. Journal of Neuroengineering and Rehabilitation, 2017, 14 (1): 71.
|
26 |
孙旭晖, 刘银华. 基于CNN-LSTM的sEMG连续手势识别. 自动化与仪器仪表, 2023, (12): 1- 4.
|
|
SUN X H , LIU Y H . CNN-LSTM based sEMG continuous gesture recognition. Automation and instrumentation, 2023, (12): 1- 4.
|
27 |
TSINGANOS P, CORNELIS J, CORNELIS B, et al. Transfer learning in sEMG-based gesture recognition[C]//Proceedings of the 12th International Conference on Information, Intelligence, Systems & Applications. Chania Crete, Greece: IEEE Press, 2021: 1-7.
|