1 |
LIN Z H, TIAN C X, HOU Y P, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the 2022 ACM Web Conference. New York, USA: ACM Press, 2022: 2320-2329.
|
2 |
YU W , LI S J . Recommender systems based on multiple social networks correlation. Future Generation Computer Systems, 2018, 87, 312- 327.
doi: 10.1016/j.future.2018.04.079
|
3 |
SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York, USA: ACM Press, 2001: 285-295.
|
4 |
WILHELM F. Matrix factorization for collaborative filtering is just solving an adjoint latent Dirichlet allocation model after all[C]//Proceedings of the 15th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2021: 55-62.
|
5 |
ZHANG Z Y , LIU Y , ZHANG Z J , et al. Fused matrix factorization with multi-tag, social and geographical influences for POI recommendation. World Wide Web, 2019, 22 (3): 1135- 1150.
doi: 10.1007/s11280-018-0579-9
|
6 |
SHANI G , HECKERMAN D , BRAFMAN R I . An MDP-based recommender system. Journal of Machine Learning Research, 2005, 6, 1265- 1295.
|
7 |
HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C]//Proceedings of the 4th International Conference on Learning Representations. Berlin, Germany: Springer, 2016: 487-498.
|
8 |
HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee, 2017: 173-182.
|
9 |
吴志强, 解庆, 李琳, 等. 基于多模态融合的图神经网络推荐算法. 计算机工程, 2024, 50 (1): 91- 100.
URL
|
|
WU Z Q , XIE Q , LI L , et al. Graph neural network recommendation algorithm based on multimodal fusion. Computer Engineering, 2024, 50 (1): 91- 100.
URL
|
10 |
陈昱瑾, 王晶, 武志昊, 等. 基于图卷积网络融合群组关系的社会化推荐方法. 计算机工程, 2023, 49 (5): 112- 121.
URL
|
|
CHEN Y J , WANG J , WU Z H , et al. Social recommendation method integrating group relationships based on graph convolution network. Computer Engineering, 2023, 49 (5): 112- 121.
URL
|
11 |
TAN Y K, XU X, LIU Y. Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York, USA: ACM Press, 2016: 17-22.
|
12 |
LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2017: 1419-1428.
|
13 |
LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2018: 1831-1839.
|
14 |
WU S , TANG Y , ZHU Y , et al. Session-based recommendation with graph neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 346- 353.
doi: 10.1609/aaai.v33i01.3301346
|
15 |
黄震华, 林小龙, 孙圣力, 等. 会话场景下基于特征增强的图神经推荐方法. 计算机学报, 2022, 45 (4): 766- 780.
|
|
HUANG Z H , LIN X L , SUN S L , et al. Feature augmentation based graph neural recommendation method in session scenarios. Chinese Journal of Computers, 2022, 45 (4): 766- 780.
|
16 |
陈聪, 张伟, 王骏. 带有时间预测辅助任务的会话式序列推荐. 计算机学报, 2021, 44 (9): 1841- 1853.
|
|
CHEN C , ZHANG W , WANG J . Session-based sequential recommendation with auxiliary time prediction. Chinese Journal of Computers, 2021, 44 (9): 1841- 1853.
|
17 |
WESTON J, CHOPRA S, BORDES A. Memory networks[C]//Proceedings of the 3rd International Conference on Learning Representations. [S. l. ]: ICLR, 2015: 1-10.
|
18 |
MALEKMOHAMADI F S , SAFI E F , KARIMIAN K M . A review on Neural Turing Machine(NTM). SN Computer Science, 2020, 1 (6): 333.
|
19 |
SUKHBAATAR S, WESTON J, FERGUS R. End-to-end memory networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2015: 2440-2448.
|
20 |
CHEN X, XU H T, ZHANG Y F, et al. Sequential recommendation with user memory networks[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2018: 108-116.
|
21 |
HUANG J, ZHAO W X, DOU H J, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York, USA: ACM Press, 2018: 505-514.
|
22 |
CAI Z P , HE Z B , GUAN X , et al. Collective data-sanitization for preventing sensitive information inference attacks in social networks. IEEE Transactions on Dependable and Secure Computing, 2016, 15 (4): 577- 590.
|
23 |
曾亚竹, 孙静宇, 何倩倩. 融合BiGRU和记忆网络的会话推荐算法. 计算机工程与设计, 2023, 44 (2): 335- 342.
|
|
ZENG Y Z , SUN J Y , HE Q Q . Session-based recommendation algorithm combined with BiGRU and memory network. Computer Engineering and Design, 2023, 44 (2): 335- 342.
|
24 |
SONG B, CAO Y, ZHANG W F, et al. Session-based recommendation with hierarchical memory networks[C]//Proceedings of the Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 2181-2184.
|
25 |
WEN Y , KANG S T , ZENG Q T , et al. Session-based recommendation with GNN and time-aware memory network. Mobile Information Systems, 2022, (6): 1879367.
|
26 |
|
27 |
RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York, USA: ACM Press, 2010: 811-820.
|