Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (10): 71-78. doi: 10.19678/j.issn.1000-3428.0068605

• Artificial Intelligence and Pattern Recognition • Previous Articles     Next Articles

Evaluation Method of Rail Transit Passenger Characteristics Based on Trajectory Similarity

MA Mingchen1,*(), GU Ying2, MA Jingxiao1, LI Weijiao3, CHANG Qingqing3   

  1. 1. College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
    2. China Railway Shanghai Design Institute Group Corporation Limited, Shanghai 200070, China
    3. The Third Research Institute of Ministry of Public Security, Shanghai 200031, China
  • Received:2023-10-18 Revised:2024-06-05 Online:2025-10-15 Published:2024-08-06
  • Contact: MA Mingchen

基于轨迹相似性的轨交乘客特征评价方法

马明辰1,*(), 顾颖2, 马竟宵1, 李维姣3, 常青青3   

  1. 1. 同济大学电子与信息工程学院, 上海 201804
    2. 中铁上海设计院集团有限公司, 上海 200070
    3. 公安部第三研究所, 上海 200031
  • 通讯作者: 马明辰
  • 基金资助:
    上海市科委社会发展科技攻关项目(21DZ1200700)

Abstract:

In urban rail transit, the operator collects and analyzes the trajectory data of passengers, obtains and classifies the travel patterns of individuals or groups, optimizes the resource allocation according to the travel characteristics of passengers, and improves passenger satisfaction. To obtain the characteristics of rail transit passengers, this study considers passenger travel trajectories in subway networks, depicts travel trajectories with highly overlapping stations as similar, and designs a trajectory similarity evaluation algorithm. Based on this evaluation, a method for evaluating passenger characteristics is proposed and the similarity matrix of passenger travel trajectories during a period is obtained. The similarity matrix is further optimized to obtain the travel pattern matrix for passengers. In this study, experiments are conducted using real-world data from the Automatic Fare Collection (AFC) system in Shanghai. The results demonstrate that the proposed method is applicable to both individual passengers and groups. Among the 10 000 randomly selected passengers, 4 386 meet the travel frequency standards and regularity requirements. Additionally, the travels of regular passengers account for 67.85% of all travels.

Key words: rail transit, passenger trajectory, trajectory similarity, subway network, travel characteristics

摘要:

在城市轨道交通的运营过程中,运营方通过收集并分析乘客的轨迹数据得出个人或群体的出行规律并进行分类筛选,根据乘客的出行特征优化轨道交通运营过程中的资源配置,提升服务满意度。为对轨道交通乘客特征进行刻画,考虑地铁网络中乘客出行轨迹的特点,并将途经站点高度重合的出行轨迹认定为相似轨迹,设计轨迹相似性评价算法。基于轨迹相似性提出乘客特征评价方法,通过轨迹相似性计算得到乘客在一段时间内出行轨迹的相似性矩阵,对相似性矩阵进一步优化获得乘客的出行规律矩阵。使用真实的上海城市轨道交通自动售检票(AFC)系统刷卡数据进行实验,结果表明该方法对于随机选择的10 000名乘客,出行次数达标且达到规律性要求的乘客有4 386名,有规律的乘客出行次数占所有乘客出行次数的67.85%。上述实验结果验证了该方法对单个乘客以及乘客群体具有适用性。

关键词: 轨道交通, 乘客轨迹, 轨迹相似性, 地铁网络, 出行特征