| 1 |
SOUSA R S D , BOUKERCHE A , LOUREIRO A A . Vehicle trajectory similarity: models, methods, and applications. ACM Computing Surveys, 2020, 53 (5): 1- 32.
|
| 2 |
熊伟, 熊淑怡, 曹竞之, 等. 一种融合图结构的时空轨迹相似性查询算法. 应用科学学报, 2023, 41 (1): 10- 22.
|
|
XIONG W , XIONG S Y , CAO J Z , et al. A spatio-temporal similarity query algorithm for trajectory based on graph structure. Journal of Applied Sciences, 2023, 41 (1): 10- 22.
|
| 3 |
周慧君, 罗世佳, 蒋和平, 等. 顾及地理语义的运动轨迹相似性度量模型. 测绘通报, 2023 (3): 67-73, 149.
|
|
ZHOU H J , LUO S J , JIANG H P , et al. Trajectory similarity measurement model considering geographic semantics. Bulletin of Surveying and Mapping, 2023 (3): 67-73, 149.
|
| 4 |
CHEN Y Y , YU P , CHEN W W , et al. Embedding-based similarity computation for massive vehicle trajectory data. IEEE Internet of Things Journal, 2022, 9 (6): 4650- 4660.
doi: 10.1109/JIOT.2021.3107327
|
| 5 |
吕一可, 徐凯, 黄振强. 基于面积划分的轨迹相似性度量方法. 计算机应用, 2020, 40 (2): 578- 583.
|
|
LÜ Y K , XU K , HUANG Z Q . Trajectory similarity measurement method based on area division. Journal of Computer Applications, 2020, 40 (2): 578- 583.
|
| 6 |
韩奕, 杜彦辉, 陈庆港, 等. 应用时间滑动窗口模型的轨迹相似性研究. 北京理工大学学报, 2021, 41 (11): 1207- 1214.
|
|
HAN Y , DU Y H , CHEN Q G , et al. A trajectory similarity analysis method based on time sliding window model. Transactions of Beijing Institute of Technology, 2021, 41 (11): 1207- 1214.
|
| 7 |
RATHORE P , KUMAR D , RAJASEGARAR S , et al. A scalable framework for trajectory prediction. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (10): 3860- 3874.
doi: 10.1109/TITS.2019.2899179
|
| 8 |
邸少宁, 朱杰, 郑加柱, 等. 出租车轨迹数据的南京人群出行模式挖掘. 测绘科学, 2021, 46 (1): 203- 212.
|
|
DI S N , ZHU J , ZHENG J Z , et al. Movement pattern mining of Nanjing residents based on taxi trajectory data. Science of Surveying and Mapping, 2021, 46 (1): 203- 212.
|
| 9 |
XIAO Z , XU S Y , LI T , et al. On extracting regular travel behavior of private cars based on trajectory data analysis. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 14537- 14549.
doi: 10.1109/TVT.2020.3043434
|
| 10 |
KUMAR D , WU H Y , RAJASEGARAR S , et al. Fast and scalable big data trajectory clustering for understanding urban mobility. IEEE Transactions on Intelligent Transportation Systems, 2018, 19 (11): 3709- 3722.
doi: 10.1109/TITS.2018.2854775
|
| 11 |
YU Q Y , LUO Y L , CHEN C M , et al. Trajectory similarity clustering based on multi-feature distance measurement. Applied Intelligence, 2019, 49 (6): 2315- 2338.
doi: 10.1007/s10489-018-1385-x
|
| 12 |
李雪松, 张锲石, 宋呈群, 等. 自动驾驶场景下的轨迹预测技术综述. 计算机工程, 2023, 49 (5): 1- 11.
doi: 10.19678/j.issn.1000-3428.0065627
|
|
LI X S , ZHANG Q S , SONG C Q , et al. Review of trajectory prediction technology in autonomous driving scenes. Computer Engineering, 2023, 49 (5): 1- 11.
doi: 10.19678/j.issn.1000-3428.0065627
|
| 13 |
ANSARI M Y , AHMAD A . Spatiotemporal trajectory clustering: a clustering algorithm for spatiotemporal data. Expert Systems with Applications, 2021, 178, 115048.
doi: 10.1016/j.eswa.2021.115048
|
| 14 |
MA D F , FANG B , MA W H , et al. Potential routes extraction for urban customized bus based on vehicle trajectory clustering. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (11): 11878- 11888.
doi: 10.1109/TITS.2023.3288030
|
| 15 |
XIA F , WANG J Z , KONG X J , et al. Exploring human mobility patterns in urban scenarios: a trajectory data perspective. IEEE Communications Magazine, 2018, 56 (3): 142- 149.
doi: 10.1109/MCOM.2018.1700242
|
| 16 |
WANG J Z , KONG X J , ZHAO W H , et al. STLoyal: a spatio-temporal loyalty-based model for subway passenger flow prediction. IEEE Access, 2018, 6, 47461- 47471.
doi: 10.1109/ACCESS.2018.2865921
|
| 17 |
ZHANG Y Y , LI Y J , JI W L . A trajectory-based user movement pattern similarity measure for user identification. IEEE Transactions on Network Science and Engineering, 2023, 10 (6): 3834- 3845.
doi: 10.1109/TNSE.2023.3274516
|
| 18 |
KONG X J , WANG K L , HOU M L , et al. Exploring human mobility for multi-pattern passenger prediction: a graph learning framework. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 16148- 16160.
doi: 10.1109/TITS.2022.3148116
|
| 19 |
牛丹丹, 段宗涛, 陈柘, 等. 城市出租车乘客出行特征可视化分析方法. 计算机工程与应用, 2019, 55 (6): 237- 243.
|
|
NIU D D , DUAN Z T , CHEN Z , et al. Visualization analysis method of urban taxi passenger travel characteristics. Computer Engineering and Applications, 2019, 55 (6): 237- 243.
|
| 20 |
马壮林, 杨兴, 胡大伟, 等. 城市轨道交通车站客流特征影响程度分析. 清华大学学报(自然科学版), 2023, 63 (9): 1428- 1439.
|
|
MA Z L , YANG X , HU D W , et al. Influence degree analysis of ridership characteristics at urban rail transit stations. Journal of Tsinghua University (Science and Technology), 2023, 63 (9): 1428- 1439.
|
| 21 |
蒋阳升, 俞高赏, 胡路, 等. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息, 2022, 22 (4): 106- 112.
|
|
JIANG Y S , YU G S , HU L , et al. Refined classification of urban rail transit stations based on clustered station's passenger traffic flow features. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (4): 106- 112.
|
| 22 |
WANG K , TSUNG F . Sparse and robust multivariate functional principal component analysis for passenger flow pattern discovery in metro systems. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (7): 8367- 8379.
doi: 10.1109/TITS.2021.3078816
|
| 23 |
JI Y J , CAO Y , LIU Y , et al. Research on classification and influencing factors of metro commuting patterns by combining smart card data and household travel survey data. IET Intelligent Transport Systems, 2019, 13 (10): 1525- 1532.
doi: 10.1049/iet-its.2018.5512
|
| 24 |
YONG J , ZHENG L J , MAO X W , et al. Mining metro commuting mobility patterns using massive smart card data. Physica A: Statistical Mechanics and Its Applications, 2021, 584, 126351.
doi: 10.1016/j.physa.2021.126351
|
| 25 |
ZHAO J J , QU Q , ZHANG F , et al. Spatio-temporal analysis of passenger travel patterns in massive smart card data. IEEE Transactions on Intelligent Transportation Systems, 2017, 18 (11): 3135- 3146.
doi: 10.1109/TITS.2017.2679179
|
| 26 |
XUE J W , SI B F , CUI H M , et al. Research on hierarchical clustering method of urban rail transit passengers based on individual portrait. Journal of Physics: Conference Series, 2021, 1883 (1): 012039.
doi: 10.1088/1742-6596/1883/1/012039
|
| 27 |
MA X L , LIU C C , WEN H M , et al. Understanding commuting patterns using transit smart card data. Journal of Transport Geography, 2017, 58, 135- 145.
doi: 10.1016/j.jtrangeo.2016.12.001
|
| 28 |
陈君, 田朝军, 赵清梅, 等. 基于时空行为规律挖掘的公交乘客分类方法. 交通运输工程学报, 2021, 21 (5): 274- 285.
|
|
CEHN J , TIAN C J , ZHAO Q M , et al. Bus passenger classification method based on spatial and temporal behavior regularity mining. Journal of Traffic and Transportation Engineering, 2021, 21 (5): 274- 285.
|
| 29 |
|
| 30 |
邹庆茹, 赵鹏, 姚向明. 基于售检票数据的城市轨道交通乘客分类. 交通运输系统工程与信息, 2018, 18 (1): 223- 230.
|
|
ZOU Q R , ZHAO P , YAO X M . Passenger classification for urban rail transit by mining smart card data. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (1): 223- 230.
|
| 31 |
姚志刚, 杨杰, 王元庆. 基于个体出行模式的公交乘客活动规律性度量. 北京交通大学学报, 2022, 46 (4): 68- 75.
|
|
YAO Z G , YANG J , WANG Y Q . Measurement of public transport passenger behavior regularity based on individual travel pattern. Journal of Beijing Jiaotong University, 2022, 46 (4): 68- 75.
|