| 1 |
|
| 2 |
|
| 3 |
PEGGS S. European spallation source technical design report: ESS-DOC-274[R]. Lund, Sverige: European Spallation Source, 2013.
|
| 4 |
SHPYRKO O G . X-ray photon correlation spectroscopy. Journal of Synchrotron Radiation, 2014, 21 (Pt 5): 1057- 1064.
|
| 5 |
王飞跃, 缪青海. 人工智能驱动的科学研究新范式: 从AI4S到智能科学. 中国科学院院刊, 2023, 38 (4): 536- 540.
|
|
WANG F Y , MIAO Q H . Novel paradigm for AI-driven scientific research: from AI4S to intelligent science. Bulletin of Chinese Academy of Sciences, 2023, 38 (4): 536- 540.
|
| 6 |
HEY T , BUTLER K , JACKSON S , et al. Machine learning and big scientific data. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378 (2166): 20190054.
|
| 7 |
李亚康, 陈刚. 小角中子散射物理模型自动化筛选. 计算机工程, 2024, 50 (6): 56- 64.
doi: 10.19678/j.issn.1000-3428.0068179
|
|
LI Y K , CHEN G . Automated selection for physical models of small-angle neutron scattering. Computer Engineering, 2024, 50 (6): 56- 64.
doi: 10.19678/j.issn.1000-3428.0068179
|
| 8 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015: 234-241.
|
| 9 |
PU Y, GAN Z, HENAO R, YUAN X, et al. Variational autoencoder for deep learning of images, labels and captions[C]//Proceedings of NeurIPS 2016. Berlin, Germany: Springer, 2016: 29.
|
| 10 |
|
| 11 |
NOH J , KIM J , STEIN H S , et al. Inverse design of solid-state materials via a continuous representation. Matter, 2019, 1 (5): 1370- 1384.
doi: 10.1016/j.matt.2019.08.017
|
| 12 |
|
| 13 |
LONG T , FORTUNATO N M , OPAHLE I , et al. Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures. npj Computational Materials, 2021, 7, 66.
doi: 10.1038/s41524-021-00526-4
|
| 14 |
ANKER A S , BUTLER K T , LE M D , et al. Using generative adversarial networks to match experimental and simulated inelastic neutron scattering data. Digital Discovery, 2023, 2 (3): 578- 590.
doi: 10.1039/D2DD00147K
|
| 15 |
WU L F , CUI P , PEI J , et al. Graph neural networks. Singapore: Springer Singapore, 2022.
|
| 16 |
JIANG Y Y , YANG Z W , GUO J L , et al. Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials. Nature Communications, 2021, 12, 5950.
doi: 10.1038/s41467-021-26226-7
|
| 17 |
BANIK S , DHABAL D , CHAN H , et al. CEGANN: crystal edge graph attention neural network for multiscale classification of materials environment. npj Computational Materials, 2023, 9 (1): 23.
doi: 10.1038/s41524-023-00975-z
|
| 18 |
|
| 19 |
QI S , LI J L , WANG S Q , et al. Online neutron/gamma discrimination and source detection using CLYC(Ce) scintillator: a sequential approach. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1014, 165733.
doi: 10.1016/j.nima.2021.165733
|
| 20 |
MORIYAMA K, NAKATANI T. A data management infrastructure for neutron scattering experiments in J-PARC/MLF[C]//Proceedings of the 15th International Conference on Accelerator and Large Experimental Physics Control Systems. Melbourne, Australia: [s. n. ], 2015: 17-23.
|
| 21 |
STABILINI A , AKSELROD M S , FOMENKO V , et al. Principal component analysis applied to neutron dosimetry based on PADC detectors and FNTDs. Radiation Measurements, 2021, 141, 106516.
doi: 10.1016/j.radmeas.2021.106516
|
| 22 |
MAFFETTONE P M , DALY A C , OLDS D . Constrained non-negative matrix factorization enabling real-time insights of in situ and high-throughput experiments. Applied Physics Reviews, 2021, 8 (4): 041410.
doi: 10.1063/5.0052859
|
| 23 |
EDELEN A , NEVEU N , FREY M , et al. Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems. Physical Review Accelerators and Beams, 2020, 23 (4): 044601.
doi: 10.1103/PhysRevAccelBeams.23.044601
|
| 24 |
RADAIDEH M I , PAPPAS C , WEZENSKY M , et al. Early fault detection in particle accelerator power electronics using ensemble learning. International Journal of Prognostics and Health Management, 2023, 14 (1): 1- 19.
|
| 25 |
何泳成, 张玉亮, 王林, 等. 基于深度学习的CSNS加速器预警系统样机. 强激光与粒子束, 2021, 33 (4): 044008.
|
|
HE Y C , ZHANG Y L , WANG L , et al. Prototype of an early warning system based on deep learning for the CSNS accelerator. High Power Laser and Particle Beams, 2021, 33 (4): 044008.
|
| 26 |
GARCIA-CARDONA C , SCHEINKER A . Machine learning surrogate for charged particle beam dynamics with space charge based on a recurrent neural network with aleatoric uncertainty. Physical Review Accelerators and Beams, 2024, 27 (2): 024601.
doi: 10.1103/PhysRevAccelBeams.27.024601
|
| 27 |
IVANOV A , AGAPOV I . Physics-based deep neural networks for beam dynamics in charged particle accelerators. Physical Review Accelerators and Beams, 2020, 23 (7): 074601.
doi: 10.1103/PhysRevAccelBeams.23.074601
|
| 28 |
LAMANNA J M , HUSSEY D S , BALTIC E , et al. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography. Review of Scientific Instruments, 2017, 88 (11): 113702.
doi: 10.1063/1.4989642
|
| 29 |
LAMANNA J M, HUSSEY D S, DISTEFANO V H, et al. NIST NeXT: a system for truly simultaneous neutron and X-ray tomography[C]//Proceedings of International Conference on Hard X-Ray, Gamma-Ray, and Neutron Detector Physics. [S. l. ]: SPIE, 2020: 24.
|
| 30 |
DOUCET M , SAMARAKOON A M , DO C , et al. Machine learning for neutron scattering at ORNL. Machine Learning: Science and Technology, 2021, 2 (2): 023001.
doi: 10.1088/2632-2153/abcf88
|
| 31 |
GRANROTH G E , AN K , SMITH H L , et al. Event-based processing of neutron scattering data at the Spallation Neutron Source. Journal of Applied Crystallography, 2018, 51 (3): 616- 629.
doi: 10.1107/S1600576718004727
|
| 32 |
BRUETZEL L K , WALKER P U , GERLING T , et al. Time-resolved small-angle X-ray scattering reveals millisecond transitions of a DNA origami switch. Nano Letters, 2018, 18 (4): 2672- 2676.
doi: 10.1021/acs.nanolett.8b00592
|
| 33 |
DO C , CHEN W R , LEE S . Small angle scattering data analysis assisted by machine learning methods. MRS Advances, 2020, 5 (29): 1577- 1584.
|
| 34 |
SCHMIDT N S , ABBATE O I , PRIETO Z M , et al. KDSource, a tool for the generation of Monte Carlo particle sources using kernel density estimation. Annals of Nuclear Energy, 2022, 177, 109309.
doi: 10.1016/j.anucene.2022.109309
|
| 35 |
LEFMANN K , NIELSEN K . McStas, a general software package for neutron ray-tracing simulations. Neutron News, 1999, 10 (3): 20- 23.
doi: 10.1080/10448639908233684
|
| 36 |
ZENDLER C , LIEUTENANT K , NEKRASSOV D , et al. VITESS 3-virtual instrumentation tool for the European spallation source. Journal of Physics: Conference Series, 2014, 528 (1): 012036.
|
| 37 |
BENTLEY P M , PAPPAS C , HABICHT K , et al. Evolutionary programming for neutron instrument optimisation. Physica B: Condensed Matter, 2006, 385, 1349- 1351.
|
| 38 |
DIJULIO D D , BJÖRGVINSDÓTTIR H , ZENDLER C , et al. Population-based metaheuristic optimization in neutron optics and shielding design. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 835, 157- 162.
doi: 10.1016/j.nima.2016.08.035
|
| 39 |
RIEDEL R A , DONAHUE C , VISSCHER T , et al. Design and performance of a large area neutron sensitive anger camera. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 794, 224- 233.
|
| 40 |
MOROZOV A , ALVES F , MARCOS J , et al. Iterative reconstruction of SiPM light response functions in a square-shaped compact gamma camera. Physics in Medicine & Biology, 2017, 62 (9): 3619.
|
| 41 |
ASAHARA A, MORITA H, MITSUMATA C, et al. Early-stopping of scattering pattern observation with Bayesian modeling[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 9410-9415.
|
| 42 |
KANAZAWA T , ASAHARA A , MORITA H . Accelerating small-angle scattering experiments with simulation-based machine learning. Journal of Physics: Materials, 2020, 3 (1): 015001.
doi: 10.1088/2515-7639/ab3c45
|
| 43 |
McDANNALD A , FRONTZEK M , SAVICI A T , et al. On-the-fly autonomous control of neutron diffraction via physics-informed Bayesian active learning. Applied Physics Reviews, 2022, 9 (2): 021408.
doi: 10.1063/5.0082956
|
| 44 |
PELT D M , BATENBURG K J . Fast tomographic reconstruction from limited data using artificial neural networks. IEEE Transactions on Image Processing, 2013, 22 (12): 5238- 5251.
doi: 10.1109/TIP.2013.2283142
|
| 45 |
MICIELI D , MINNITI T , EVANS L M , et al. Accelerating neutron tomography experiments through artificial neural network based reconstruction. Scientific Reports, 2019, 9, 2450.
doi: 10.1038/s41598-019-38903-1
|
| 46 |
GODOY W F, PETERSON P F, HAHN S E, et al. Efficient data management in neutron scattering data reduction workflows at ORNL[C]//Proceedings of 2020 IEEE International Conference on Big Data (BigData). Washington D. C., USA: IEEE Press, 2020: 2674-2680.
|
| 47 |
CHANG M C , WEI Y , CHEN W R , et al. Deep learning-based super-resolution for small-angle neutron scattering data: attempt to accelerate experimental workflow. MRS Communications, 2020, 10 (1): 11- 17.
doi: 10.1557/mrc.2019.166
|
| 48 |
CHANG M C, WEI Y, CHEN W R, et al. Accelerating neutron scattering data collection and experiments using AI deep super-resolution learning[EB/OL]. [2024-03-05]. https://arxiv.org/abs/1904.08450v2.
|
| 49 |
SULLIVAN B, ARCHIBALD R, VANDAVASI V, et al. Volumetric segmentation via neural networks improves neutron crystallography data analysis[C]//Proceedings of the 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Larnaca, Cyprus: IEEE Press, 2019: 549-555.
|
| 50 |
SULLIVAN B , ARCHIBALD R , AZADMANESH J , et al. BraggNet: integrating Bragg peaks using neural networks. Journal of Applied Crystallography, 2019, 52 (Pt 4): 854- 863.
|
| 51 |
MELNIKOV A D , TSENTALOVICH Y P , YANSHOLE V V . Deep learning for the precise peak detection in high-resolution LC-MS data. Analytical Chemistry, 2020, 92 (1): 588- 592.
doi: 10.1021/acs.analchem.9b04811
|
| 52 |
HAO Y Q , FENG E X , LU D , et al. Machine-learning-assisted automation of single-crystal neutron diffraction. Journal of Applied Crystallography, 2023, 56 (2): 519- 525.
doi: 10.1107/S1600576723001516
|
| 53 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE Press, 2017: 2980-2988.
|
| 54 |
CHEN J , YU C , ZENG Z , et al. The energy-resolved neutron imaging instrument at the China spallation neutron source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1064, 169460.
doi: 10.1016/j.nima.2024.169460
|
| 55 |
TREIMER W . Special issue advances in neutron imaging. Applied Sciences, 2022, 12 (3): 1187.
doi: 10.3390/app12031187
|
| 56 |
AGGARWAL R , LAMICHHANE B P , MEYLAN M H , et al. An investigation of radial basis function method for strain reconstruction by energy-resolved neutron imaging. Applied Sciences, 2021, 11 (1): 391.
doi: 10.3390/app11010391
|
| 57 |
BAE J W , WU T C , JOVANOVIC I . Reconstruction of fast neutron direction in segmented organic detectors using deep learning. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1049, 168024.
doi: 10.1016/j.nima.2023.168024
|
| 58 |
JAMIESON B , STUBBS M , RAMANNA S , et al. Using machine learning to improve neutron identification in water Cherenkov detectors. Frontiers in Big Data, 2022, 5, 978857.
doi: 10.3389/fdata.2022.978857
|
| 59 |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 785-794.
|
| 60 |
ZHANG S , TONG H H , XU J J , et al. Graph convolutional networks: a comprehensive review. Computational Social Networks, 2019, 6 (1): 11.
doi: 10.1186/s40649-019-0069-y
|
| 61 |
MANESSI F , ROZZA A , MANZO M . Dynamic graph convolutional networks. Pattern Recognition, 2020, 97, 107000.
doi: 10.1016/j.patcog.2019.107000
|
| 62 |
ZHAO C Y , YAN Y , LI H Y , et al. An effective gamma white spots removal method for CCD-based neutron images denoising. Fusion Engineering and Design, 2020, 150, 111375.
doi: 10.1016/j.fusengdes.2019.111375
|
| 63 |
YANG J R , ZHAO C Y , QIAO S , et al. Deep learning methods for neutron image restoration. Annals of Nuclear Energy, 2023, 188, 109820.
doi: 10.1016/j.anucene.2023.109820
|
| 64 |
HENDRIKSEN A A , PELT D M , BATENBURG K J . Noise2Inverse: self-supervised deep convolutional denoising for tomography. IEEE Transactions on Computational Imaging, 2020, 6, 1320- 1335.
doi: 10.1109/TCI.2020.3019647
|
| 65 |
YAHIAOUI M L , KHARFI F , BOUKERDJA L . Resolution enhancement of neutron radiography image using combined SRCNN-POCS method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1050, 168123.
doi: 10.1016/j.nima.2023.168123
|
| 66 |
VENKATAKRISHNAN S , ZIABARI A , HINKLE J , et al. Convolutional neural network based non-iterative reconstruction for accelerating neutron tomography. Machine Learning: Science and Technology, 2021, 2 (2): 025031.
doi: 10.1088/2632-2153/abde8e
|
| 67 |
ZIABARI A, YE D H, SRIVASTAVA S, et al. 2.5D deep learning for CT image reconstruction using a multi-GPU implementation[C]//Proceedings of the 52nd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, USA: IEEE Press, 2018: 2044-2049.
|
| 68 |
PELT D M , BATENBURG K J , SETHIAN J A . Improving tomographic reconstruction from limited data using mixed-scale dense convolutional neural networks. Journal of Imaging, 2018, 4 (11): 128.
doi: 10.3390/jimaging4110128
|
| 69 |
YUAN X , HAN S S . Single-pixel neutron imaging with artificial intelligence: breaking the barrier in multi-parameter imaging, sensitivity, and spatial resolution. Innovation, 2021, 2 (2): 100100.
|
| 70 |
KINGSTON A M , MYERS G R , PELLICCIA D , et al. Neutron ghost imaging. Physical Review A, 2020, 101 (5): 053844.
doi: 10.1103/PhysRevA.101.053844
|
| 71 |
HE Y H , HUANG Y Y , ZENG Z R , et al. Single-pixel imaging with neutrons. Science Bulletin, 2021, 66 (2): 133- 138.
doi: 10.1016/j.scib.2020.09.030
|
| 72 |
VENKATAKRISHNAN S V , FANCHER C M , ZIATDINOV M , et al. Adaptive sampling for accelerating neutron diffraction-based strain mapping. Machine Learning: Science and Technology, 2023, 4 (2): 025001.
doi: 10.1088/2632-2153/acc512
|
| 73 |
KIM G , DIAO H Y , LEE C , et al. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Materialia, 2019, 181, 124- 138.
doi: 10.1016/j.actamat.2019.09.026
|
| 74 |
GARCIA-CARDONA C, KANNAN R, JOHNSTON T, et al. Learning to predict material structure from neutron scattering data[C]//Proceedings of the IEEE International Conference on Big Data (Big Data). Los Angeles, USA: IEEE Press, 2019: 4490-4497.
|
| 75 |
LOLLA S , LIANG H T , KUSNE A G , et al. A semi-supervised deep-learning approach for automatic crystal structure classification. Journal of Applied Crystallography, 2022, 55 (Pt 4): 882- 889.
|
| 76 |
BILLINGE S J L . The atomic pair distribution function: past and present. Zeitschrift Für Kristallographie-Crystalline Materials, 2004, 219 (3): 117- 121.
|
| 77 |
LIU C H , TAO Y Z , HSU D , et al. Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function. Acta Crystallographica Section A, 2019, 75 (4): 633- 643.
doi: 10.1107/S2053273319005606
|
| 78 |
KILPATRICK M, BRUHWILER D, CARLIN E, et al. Interactive automated Bragg peak identification with 3D neutron scattering data: OSTI-2251573[R]. Oak Ridge, USA: Oak Ridge National Laboratory, 2023.
|
| 79 |
VASYLENKO A , GAMON J , DUFF B B , et al. Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry. Nature Communications, 2021, 12, 5561.
doi: 10.1038/s41467-021-25343-7
|
| 80 |
SIVARAMAN G , GALLINGTON L , KRISHNAMOORTHY A N , et al. Experimentally driven automated machine-learned interatomic potential for a refractory oxide. Physical Review Letters, 2021, 126 (15): 156002.
doi: 10.1103/PhysRevLett.126.156002
|
| 81 |
MEBERT A M, VILLANUEVA M E, TOVAR G I, et al. Small-angle scattering techniques for biomolecular structure and dynamics[M]//SAUDAGAR P, TRIPATHI T. Advanced spectroscopic methods to study biomolecular structure and dynamics. [S. l. ]: Elsevier, 2023: 271-307.
|
| 82 |
FRANKE D , JEFFRIES C M , SVERGUN D I . Machine learning methods for X-ray scattering data analysis from biomacromolecular solutions. Biophysical Journal, 2018, 114 (11): 2485- 2492.
doi: 10.1016/j.bpj.2018.04.018
|
| 83 |
TOMASZEWSKI P, YU S, BORG M, et al. Machine learning-assisted analysis of small angle X-ray scattering[C]//Proceedings of 2021 Swedish Workshop on Data Science (SweDS). Washington D. C., USA: IEEE Press, 2021: 1-6.
|
| 84 |
PAN T , JIN S K , MILLER M D , et al. Deep learning-based prediction of electron density maps of proteins. Biophysical Journal, 2022, 121 (3): 147- 148.
|
| 85 |
GABEL F R . Structural dynamics of substrate processing by the PAN-proteasome complex in solution: a time-resolved small-angle neutron scattering study. Biophysical Journal, 2023, 122 (3): 191.
|
| 86 |
GARCIA-CARDONA C, KANNAN R, JOHNSTON T, et al. Structure prediction from scattering profiles: a neutron-scattering use-case[M]//KARPATNE A, KANNAN R, KUMAR V. Knowledge-guided machine learning. [S. l. ]: Chapman and Hall/CRC, 2022: 287-304.
|
| 87 |
HONECKER D , BERSWEILER M , EROKHIN S , et al. Using small-angle scattering to guide functional magnetic nanoparticle design. Nanoscale Advances, 2022, 4 (4): 1026- 1059.
doi: 10.1039/D1NA00482D
|
| 88 |
SHARMA R , MISHRA S K . Interfacial skyrmion in magnetic thin films and its applications. Journal of Magnetism and Magnetic Materials, 2022, 551, 169107.
doi: 10.1016/j.jmmm.2022.169107
|
| 89 |
ARCHIBALD R K , DOUCET M , JOHNSTON T , et al. Classifying and analyzing small-angle scattering data using weighted k nearest neighbors machine learning techniques. Journal of Applied Crystallography, 2020, 53 (2): 326- 334.
doi: 10.1107/S1600576720000552
|
| 90 |
DEMERDASH O , SHRESTHA U R , PETRIDIS L , et al. Using small-angle scattering data and parametric machine learning to optimize force field parameters for intrinsically disordered proteins. Frontiers in Molecular Biosciences, 2019, 6, 64.
doi: 10.3389/fmolb.2019.00064
|
| 91 |
CHEN P C , SHEVCHUK R , STRNAD F M , et al. Combined small-angle X-ray and neutron scattering restraints in molecular dynamics simulations. Journal of Chemical Theory and Computation, 2019, 15 (8): 4687- 4698.
doi: 10.1021/acs.jctc.9b00292
|
| 92 |
HINDERHOFER A , GRECO A , STAROSTIN V , et al. Machine learning for scattering data: strategies, perspectives and applications to surface scattering. Journal of Applied Crystallography, 2023, 56 (Pt 1): 3- 11.
|
| 93 |
GRECO A , STAROSTIN V , KARAPANAGIOTIS C , et al. Fast fitting of reflectivity data of growing thin films using neural networks. Journal of Applied Crystallography, 2019, 52 (Pt 6): 1342- 1347.
|
| 94 |
DOUCET M , ARCHIBALD R K , HELLER W T . Machine learning for neutron reflectometry data analysis of two-layer thin films. Machine Learning: Science and Technology, 2021, 2 (3): 035001.
doi: 10.1088/2632-2153/abf257
|
| 95 |
AOKI H , LIU Y W , YAMASHITA T . Deep learning approach for an interface structure analysis with a large statistical noise in neutron reflectometry. Scientific Reports, 2021, 11, 22711.
doi: 10.1038/s41598-021-02085-6
|
| 96 |
BURKEL E . Determination of phonon dispersion curves by means of inelastic X-ray scattering. Journal of Physics: Condensed Matter, 2001, 13 (34): 7627- 7644.
doi: 10.1088/0953-8984/13/34/310
|
| 97 |
LEE S H , BROHOLM C , RATCLIFF W , et al. Emergent excitations in a geometrically frustrated magnet. Nature, 2002, 418 (6900): 856- 858.
doi: 10.1038/nature00964
|
| 98 |
FURRER A , MESOT J F , STRÄSSLE T . Neutron scattering in condensed matter physics. Singapore: World Scientific Publishing Company, 2009.
|
| 99 |
CHEN Z T , ANDREJEVIC N , SMIDT T , et al. Direct prediction of phonon density of states with euclidean neural networks. Advanced Science, 2021, 8 (12): 2004214.
doi: 10.1002/advs.202004214
|
| 100 |
CHOUDHARY K , GARRITY K F , SHARMA V , et al. High-throughput density functional perturbation theory and machine learning predictions of infrared, piezoelectric, and dielectric responses. npj Computational Materials, 2020, 6, 64.
doi: 10.1038/s41524-020-0337-2
|
| 101 |
SMIDT T E , GEIGER M , MILLER B K . Finding symmetry breaking order parameters with Euclidean neural networks. Physical Review Research, 2021, 3 (1): L012002.
doi: 10.1103/PhysRevResearch.3.L012002
|
| 102 |
CHENG Y Q , WU G , PAJEROWSKI D M , et al. Direct prediction of inelastic neutron scattering spectra from the crystal structure. Machine Learning: Science and Technology, 2023, 4 (1): 015010.
doi: 10.1088/2632-2153/acb315
|
| 103 |
SAMARAKOON A M , BARROS K , LI Y W , et al. Machine-learning-assisted insight into spin ice Dy2Ti2O7. Nature Communications, 2020, 11, 892.
doi: 10.1038/s41467-020-14660-y
|
| 104 |
SAMARAKOON A M , LAURELL P , BALZ C , et al. Extraction of interaction parameters for α-RuCl3 from neutron data using machine learning. Physical Review Research, 2022, 4 (2): L022061.
doi: 10.1103/PhysRevResearch.4.L022061
|
| 105 |
TIAN C W , FEI L K , ZHENG W X , et al. Deep learning on image denoising: an overview. Neural Networks, 2020, 131, 251- 275.
doi: 10.1016/j.neunet.2020.07.025
|
| 106 |
CHE Z P , PURUSHOTHAM S , CHO K , et al. Recurrent neural networks for multivariate time series with missing values. Scientific Reports, 2018, 8, 6085.
doi: 10.1038/s41598-018-24271-9
|
| 107 |
|
| 108 |
HASHIMOTO K , HU H Y , YOU Y Z . Neural ordinary differential equation and holographic quantum chromodynamics. Machine Learning: Science and Technology, 2021, 2 (3): 035011.
doi: 10.1088/2632-2153/abe527
|
| 109 |
NAKAJIMA M , TANAKA K , HASHIMOTO T . Neural Schrödinger equation: physical law as deep neural network. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (6): 2686- 2700.
doi: 10.1109/TNNLS.2021.3120472
|
| 110 |
LI M N , JIANG L J . Deep learning nonlinear multiscale dynamic problems using Koopman operator. Journal of Computational Physics, 2021, 446, 110660.
doi: 10.1016/j.jcp.2021.110660
|
| 111 |
NGIAM J, KHOSLA A, KIM M, et al. Multimodal deep learning[C]//Proceedings of the 28th International Conference on Machine Learning. Madison, USA: Omnipress, 2011: 689-696.
|
| 112 |
GAO J , LI P , CHEN Z K , et al. A survey on deep learning for multimodal data fusion. Neural Computation, 2020, 32 (5): 829- 864.
doi: 10.1162/neco_a_01273
|
| 113 |
潘梦竹, 李千目, 邱天. 深度多模态表示学习的研究综述. 计算机工程与应用, 2023, 59 (2): 48- 64.
|
|
PAN M Z , LI Q M , QIU T . Survey of research on deep multimodal representation learning. Computer Engineering and Applications, 2023, 59 (2): 48- 64.
|
| 114 |
XU S G , ZHANG L , HUANG W B , et al. Deformable convolutional networks for multimodal human activity recognition using wearable sensors. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 2505414.
|
| 115 |
YANG D K , LIU Y , HUANG C , et al. Target and source modality co-reinforcement for emotion understanding from asynchronous multimodal sequences. Knowledge-Based Systems, 2023, 265, 110370.
doi: 10.1016/j.knosys.2023.110370
|
| 116 |
DALMAZ O , YURT M , CUKUR T . ResViT: residual vision transformers for multimodal medical image synthesis. IEEE Transactions on Medical Imaging, 2022, 41 (10): 2598- 2614.
doi: 10.1109/TMI.2022.3167808
|
| 117 |
ROSCHER R , BOHN B , DUARTE M F , et al. Explainable machine learning for scientific insights and discoveries. IEEE Access, 2020, 8, 42200- 42216.
doi: 10.1109/ACCESS.2020.2976199
|
| 118 |
OVIEDO F , FERRES J L , BUONASSISI T , et al. Interpretable and explainable machine learning for materials science and chemistry. Accounts of Materials Research, 2022, 3 (6): 597- 607.
doi: 10.1021/accountsmr.1c00244
|
| 119 |
ALLEN G I , GAN L Q , ZHENG L L . Interpretable machine learning for discovery: statistical challenges and opportunities. Annual Review of Statistics and Its Application, 2024, 11, 97- 121.
doi: 10.1146/annurev-statistics-040120-030919
|
| 120 |
|
| 121 |
BUTLER K T , LE M D , THIYAGALINGAM J , et al. Interpretable, calibrated neural networks for analysis and understanding of inelastic neutron scattering data. Journal of Physics: Condensed Matter, 2021, 33 (19): 194006.
doi: 10.1088/1361-648X/abea1c
|
| 122 |
|
| 123 |
|
| 124 |
|
| 125 |
SHEN J, LI L, DERY L M, et al. Cross-modal fine-tuning: Align then refine[C]//Proceedings of International Conference on Machine Learning. Honolulu, USA: PMLR, 2023: 31030-31056.
|
| 126 |
WILKINSON M D , DUMONTIER M , AALBERSBERG I J , et al. The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 2016, 3, 160018.
doi: 10.1038/sdata.2016.18
|