Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (10): 53-70. doi: 10.19678/j.issn.1000-3428.0069651

• Research Hotspots and Reviews • Previous Articles     Next Articles

A Survey of Artificial Intelligence Applications Throughout the Full Lifecycle of Neutron Scattering Experiments

LI Yakang1,2,3, LI Jianfang1,2, HU Peng1,2, CHEN Juan1,2, WANG Shengxiang1,2, QI Fazhi1,2,3, CHEN Gang1,3,*()   

  1. 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
    2. Spallation Neutron Source Science Center, Dongguan 523803, Guangdong, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-03-25 Revised:2024-07-11 Online:2025-10-15 Published:2024-10-14
  • Contact: CHEN Gang

人工智能在中子散射实验全生命周期中的应用综述

李亚康1,2,3, 李健芳1,2, 胡鹏1,2, 陈娟1,2, 王声翔1,2, 齐法制1,2,3, 陈刚1,3,*()   

  1. 1. 中国科学院高能物理研究所, 北京 100049
    2. 散裂中子源科学中心, 广东 东莞 523803
    3. 中国科学院大学, 北京 100049
  • 通讯作者: 陈刚
  • 基金资助:
    国家自然科学基金青年基金项目(12005248); 国家自然科学基金青年基金项目(12005116); 中国科学院网信专项(CAS-WX2022SF-0104)

Abstract:

This study explores the use of Artificial Intelligence (AI) technology throughout the neutron scattering experiments′ lifecycle to determine how AI technology can revolutionize key aspects such as experimental apparatus, data acquisition, and data processing. The study begins by introducing the fundamental principles and experimental procedures of neutron scattering technology before focusing on the multifaceted applications of AI technology in neutron scattering experiments. These applications include optimizing experimental infrastructure, data acquisition, and imaging preprocessing, as well as characterizing experimental samples in neutron diffraction, neutron reflection, and Inelastic Neutron Scattering (INS). This study demonstrates the importance of AI technology in increasing the intelligence level of experiments, accelerating data processing, and improving the accuracy and reliability of data analyses. In addition, an in-depth discussion is held on the future application of AI technology in neutron scattering experiments, indicating that with the continuous advancement of technologies such as multimodal learning, interpretable models, large language models, and AI-Ready databases, AI technology is poised to bring revolutionary changes to neutron scattering experiments, opening up new avenues for revealing the microstructure and properties of complex material systems.

Key words: Artificial Intelligence (AI), neutron scattering, neural network, multimodal learning, sample characterization

摘要:

探讨人工智能(AI)技术在中子散射实验全生命周期中的应用,旨在梳理AI技术如何革新中子散射实验装置、数据采集、数据处理等关键环节。首先介绍中子散射技术的基本原理和实验流程,然后重点讨论AI技术在中子散射实验中的多方面应用,包括实验基础设施的优化设计、数据采集与成像的数据预处理以及中子衍射、中子反射、非弹性中子散射(INS)等实验样品表征方面的应用,展示AI技术在提高实验的智能化水平、加快数据处理速度、提升数据分析的准确性和可靠性等方面的重要性。此外,对AI技术在中子散射实验中的未来应用进行深入讨论,指出随着多模态学习、可解释模型、大语言模型、AI-Ready数据库等技术的不断进步和应用领域的拓展,AI技术有望为中子散射实验带来革命性的变革,为揭示复杂物质系统的微观结构和性质开辟新的途径。

关键词: 人工智能, 中子散射, 神经网络, 多模态学习, 样品表征