1 |
PACHADE S , PORWAL P , KOKARE M , et al. NENet: nested EfficientNet and adversarial learning for joint optic disc and cup segmentation. Medical Image Analysis, 2021, 74, 102253.
doi: 10.1016/j.media.2021.102253
|
2 |
JIANG Y M , DUAN L X , CHENG J , et al. JointRCNN: a region-based convolutional neural network for optic disc and cup segmentation. IEEE Transactions on Bio-Medical Engineering, 2020, 67 (2): 335- 343.
doi: 10.1109/TBME.2019.2913211
|
3 |
SHELHAMER E , LONG J , DARRELL T . Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39 (4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683
|
4 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of MICCAI 2015. Berlin, Germany: Springer, 2015: 234-241.
|
5 |
ISSAC A , PARTHA SARATHI M , DUTTA M K . An adaptive threshold based image processing technique for improved glaucoma detection and classification. Computer Methods and Programs in Biomedicine, 2015, 122 (2): 229- 244.
doi: 10.1016/j.cmpb.2015.08.002
|
6 |
ORLANDO J I , FU H Z , BARBOSA B J , et al. REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis, 2020, 59, 101570.
doi: 10.1016/j.media.2019.101570
|
7 |
SIVASWAMY J, KRISHNADAS S R, DATT J G, et al. Drishti-GS: retinal image dataset for Optic Nerve Head(ONH) segmentation[C]//Proceedings of the 11th International Symposium on Biomedical Imaging(ISBI). Washington D. C., USA: IEEE Press, 2014: 53-56.
|
8 |
EDUPUGANTI V G, CHAWLA A, KALE A. Automatic optic disk and cup segmentation of fundus images using deep learning[C]//Proceedings of the 25th IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2018: 2227-2231.
|
9 |
SHANKARANARAYANA S M , RAM K , MITRA K , et al. Fully convolutional networks for monocular retinal depth estimation and optic disc-cup segmentation. IEEE Journal of Biomedical and Health Informatics, 2019, 23 (4): 1417- 1426.
doi: 10.1109/JBHI.2019.2899403
|
10 |
FU H Z , CHENG J , XU Y W , et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Transactions on Medical Imaging, 2018, 37 (7): 1597- 1605.
doi: 10.1109/TMI.2018.2791488
|
11 |
CHENG J , LI Z G , GU Z W , et al. Structure-preserving guided retinal image filtering and its application for optic disk analysis. IEEE Transactions on Medical Imaging, 2018, 37 (11): 2536- 2546.
doi: 10.1109/TMI.2018.2838550
|
12 |
YU S , XIAO D , FROST S , et al. Robust optic disc and cup segmentation with deep learning for glaucoma detection. Computerized Medical Imaging and Graphics, 2019, 74, 61- 71.
doi: 10.1016/j.compmedimag.2019.02.005
|
13 |
XIE Z , LING T H , YANG Y Y , et al. Optic disc and cup image segmentation utilizing contour-based transformation and sequence labeling networks. Journal of Medical Systems, 2020, 44 (5): 96.
doi: 10.1007/s10916-020-01561-2
|
14 |
YIN P S , XU Y W , ZHU J H , et al. Deep level set learning for optic disc and cup segmentation. Neurocomputing, 2021, 464, 330- 341.
doi: 10.1016/j.neucom.2021.08.102
|
15 |
YUAN X , ZHOU L X , YU S Y , et al. A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup. Artificial Intelligence in Medicine, 2021, 113, 102035.
doi: 10.1016/j.artmed.2021.102035
|
16 |
GUO W , ZHANG G D , GONG Z X , et al. Effective integration of object boundaries and regions for improving the performance of medical image segmentation by using two cascaded networks. Computer Methods and Programs in Biomedicine, 2021, 212, 106423.
doi: 10.1016/j.cmpb.2021.106423
|
17 |
SHANMUGAM P , RAJA J , PITCHAI R . An automatic recognition of glaucoma in fundus images using deep learning and random forest classifier. Applied Soft Computing, 2021, 109, 107512.
doi: 10.1016/j.asoc.2021.107512
|
18 |
HASAN M K , ALAM M A , ELAHI M T E , et al. DRNet: segmentation and localization of optic disc and fovea from diabetic retinopathy image. Artificial Intelligence in Medicine, 2021, 111, 102001.
doi: 10.1016/j.artmed.2020.102001
|
19 |
HERVELLA Á S , ROUCO J , NOVO J , et al. End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images. Applied Soft Computing, 2022, 116, 108347.
doi: 10.1016/j.asoc.2021.108347
|
20 |
ZHOU W , PENG Y H , JI J H , et al. RMSDSC-Net: a robust multiscale feature extraction with depthwise separable convolution network for optic disc and cup segmentation. International Journal of Intelligent Systems, 2022, 37 (12): 11482- 11505.
doi: 10.1002/int.23051
|
21 |
蒋芸, 高静, 王发林. SAG-Net: 用于联合视盘和视杯分割的新型跳过注意力指导网络. 计算机工程与科学, 2021, 43 (7): 1273- 1282.
doi: 10.3969/j.issn.1007-130X.2021.07.017
|
|
JIANG Y , GAO J , WANG F L . SAG-Net: a new skip attention guided network for joint disc and cup segmentation. Computer Engineering & Science, 2021, 43 (7): 1273- 1282.
doi: 10.3969/j.issn.1007-130X.2021.07.017
|
22 |
徐蓬泉, 梁宇翔, 李英. 融合多尺度语义和剩余瓶颈注意力的医学图像分割. 计算机工程, 2023, 49 (10): 162- 170.
doi: 10.3778/j.issn.1002-8331.2201-0405
|
|
XU P Q , LIANG Y X , LI Y . Medical image segmentation fusing multi-scale semantic and residual bottleneck attention. Computer Engineering, 2023, 49 (10): 162- 170.
doi: 10.3778/j.issn.1002-8331.2201-0405
|
23 |
刘洪普, 赵一浩, 侯向丹, 等. 融合上下文和注意力的视盘视杯分割. 中国图象图形学报, 2021, 26 (5): 1041- 1057.
URL
|
|
LIU H P , ZHAO Y H , HOU X D , et al. Optic disc and cup segmentation by combining context and attention. Journal of Image and Graphics, 2021, 26 (5): 1041- 1057.
URL
|
24 |
刘然, 刘建霞, 王海翼. 改进U-net++的青光眼视盘视杯分割方法. 电子设计工程, 2023, 31 (1): 27- 33.
URL
|
|
LIU R , LIU J X , WANG H Y . The improved U-net++method for glaucoma optic disc and optic cup segmentation. Electronic Design Engineering, 2023, 31 (1): 27- 33.
URL
|
25 |
IMTIAZ R , KHAN T M , NAQVI S S , et al. Screening of glaucoma disease from retinal vessel images using semantic segmentation. Computers & Electrical Engineering, 2021, 91, 107036.
doi: 10.1016/j.compeleceng.2021.107036
|
26 |
HAIDER A , ARSALAN M , LEE M B , et al. Artificial intelligence-based computer-aided diagnosis of glaucoma using retinal fundus images. Expert Systems with Applications, 2022, 207, 117968.
doi: 10.1016/j.eswa.2022.117968
|
27 |
WANG S J , YU L Q , YANG X , et al. Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Transactions on Medical Imaging, 2019, 38 (11): 2485- 2495.
doi: 10.1109/TMI.2019.2899910
|
28 |
|
29 |
BIAN X S , LUO X B , WANG C , et al. Optic disc and optic cup segmentation based on anatomy guided cascade network. Computer Methods and Programs in Biomedicine, 2020, 197, 105717.
doi: 10.1016/j.cmpb.2020.105717
|
30 |
刘丽霞, 宣士斌, 刘畅, 等. 多专家注释的视杯和视盘不确定性量化. 计算机工程, 2023, 49 (1): 250-257, 269.
doi: 10.19678/j.issn.1000-3428.0063897
|
|
LIU L X , XUAN S B , LIU C , et al. Quantification of optic cup and optic disc uncertainty with multi-expert annotations. Computer Engineering, 2023, 49 (1): 250-257, 269.
doi: 10.19678/j.issn.1000-3428.0063897
|
31 |
YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the 38th International Conference on Machine Learning. [S. l. ]: PMLR, 2021: 11863-11874.
|
32 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13713-13722.
|
33 |
崔博, 贾兆年, 姬鹏, 等. 基于改进EfficientNetV2网络的脑肿瘤分类方法. 吉林大学学报(理学版), 2023, 61 (5): 1169- 1177.
URL
|
|
CUI B , JIA Z N , JI P , et al. Brain tumor classification method based on improved EfficientNetV2 network. Journal of Jilin University(Science Edition), 2023, 61 (5): 1169- 1177.
URL
|
34 |
|
35 |
ALMAZROA A, ALODHAYB S, OSMAN E, et al. Retinal fundus images for glaucoma analysis: the RIGA dataset[C]//Proceedings of Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications. [S. l. ]: SPIE, 2018: 55-62.
|
36 |
LIU B Y , PAN D R , SONG H . Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network. BMC Medical Imaging, 2021, 21 (1): 14.
doi: 10.1186/s12880-020-00528-6
|
37 |
ZHOU W , JI J H , JIANG Y , et al. EARDS: EfficientNet and attention-based residual depth-wise separable convolution for joint OD and OC segmentation. Frontiers in Neuroscience, 2023, 17, 1139181.
doi: 10.3389/fnins.2023.1139181
|
38 |
DEWA J K, RACHMAWATI E, KOSALA G. Investigating self-attention in Swin-UNet model for disc and cup segmentation[C]//Proceedings of the 10th International Conference on Information Technology, Computer, and Electrical Engineering(ICITACEE). Washington D. C., USA: IEEE Press, 2023: 1-10.
|
39 |
LI Z R , ZHAO C , HAN Z K , et al. TUNet and domain adaptation based learning for joint optic disc and cup segmentation. Computers in Biology and Medicine, 2023, 163, 107209.
doi: 10.1016/j.compbiomed.2023.107209
|