1 |
ZHANG W C , FU C , XIE H Y , et al. Global context aware RCNN for object detection. Neural Computing and Applications, 2021, 33 (18): 11627- 11639.
doi: 10.1007/s00521-021-05867-1
|
2 |
ARORA N , KUMAR Y , KARKRA R , et al. Automatic vehicle detection system in different environment conditions using fast R-CNN. Multimedia Tools and Applications, 2022, 81 (13): 18715- 18735.
doi: 10.1007/s11042-022-12347-8
|
3 |
LI X M , XIE Z J , DENG X , et al. Traffic sign detection based on improved faster R-CNN for autonomous driving. The Journal of Supercomputing, 2022, 78 (6): 7982- 8002.
doi: 10.1007/s11227-021-04230-4
|
4 |
GAWANDE U , HAJARI K , GOLHAR Y . SIRA: Scale illumination rotation affine invariant mask R-CNN for pedestrian detection. Applied Intelligence, 2022, 52 (9): 10398- 10416.
doi: 10.1007/s10489-021-03073-z
|
5 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
6 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
7 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
8 |
裴伟, 许晏铭, 朱永英, 等. 改进的SSD航拍目标检测方法. 软件学报, 2019, 30 (3): 738- 758.
|
|
PEI W , XU Y M , ZHU Y Y , et al. The target detection method of aerial photography images with improved SSD. Journal of Software, 2019, 30 (3): 738- 758.
|
9 |
DONG C , LUO X S . Research on a pedestrian detection algorithm based on improved SSD network. Journal of Physics: Conference Series, 2021, 1802 (3): 032073.
doi: 10.1088/1742-6596/1802/3/032073
|
10 |
高宗, 李少波, 陈济楠, 等. 基于YOLO网络的行人检测方法. 计算机工程, 2018, 44 (5): 215-219, 226.
doi: 10.19678/j.issn.1000-3428.0046885
|
|
GAO Z , LI S B , CHEN J N , et al. Pedestrian detection method based on YOLO network. Computer Engineering, 2018, 44 (5): 215-219, 226.
doi: 10.19678/j.issn.1000-3428.0046885
|
11 |
徐守坤, 邱亮, 李宁, 等. 基于HOG-CSLBP及YOLOv2的行人检测. 计算机工程与设计, 2019, 40 (10): 2964- 2968.
|
|
XU S K , QIU L , LI N , et al. Pedestrian detection based on HOG-CSLBP and YOLOv2. Computer Engineering and Design, 2019, 40 (10): 2964- 2968.
|
12 |
魏润辰, 何宁, 尹晓杰. YOLO-Person: 道路区域行人检测. 计算机工程与应用, 2020, 56 (19): 197- 204.
|
|
WEI R C , HE N , YIN X J . YOLO-person: pedestrian detection in road areas. Computer Engineering and Applications, 2020, 56 (19): 197- 204.
|
13 |
陈一潇, 阿里甫·库尔班, 林文龙, 等. 面向拥挤行人检测的CA-YOLOv5. 计算机工程与应用, 2022, 58 (9): 238- 245.
|
|
CHEN Y X , Alifu·Kuerban , LIN W L , et al. CA-YOLOv5 for crowded pedestrian detection. Computer Engineering and Applications, 2022, 58 (9): 238- 245.
|
14 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13713-13722.
|
15 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1063-6919.
|
16 |
TANG F , YANG F , TIAN X Q . Long-distance person detection based on YOLOv7. Electronics, 2023, 12 (6): 1502.
doi: 10.3390/electronics12061502
|
17 |
|
18 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 10781-10790.
|
19 |
SONG G, LIU Y, WANG X. Revisiting the sibling head in object detector[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 257-268.
|
20 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1580-1589.
|
21 |
|
22 |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-10-20]. https://arxiv.org/pdf/1704.04861.
|
23 |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 122-138.
|
24 |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 3213-3223.
|
25 |
YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2020: 1257-1265.
|