1 |
TANG C, HOU C P. RGBD salient object detection by structured low-rank matrix recovery and Laplacian constraint. Transactions of Tianjin University, 2017, 23(2): 176- 183.
doi: 10.1007/s12209-017-0032-7
|
2 |
王亮, 张超. 一种基于YOLOv5的轻量型行人检测方法. 工业控制计算机, 2023, 36(4): 84-86, 89.
URL
|
|
WANG L, ZHANG C. A lightweight pedestrian detection method based on YOLOv5. Industrial Control Computer, 2023, 36(4): 84-86, 89.
URL
|
3 |
|
4 |
洪松, 高定国. 基于YOLOv3的车辆和行人检测方法. 电脑知识与技术, 2020, 16(8): 192-193, 198.
URL
|
|
HONG S, GAO D G. Vehicle and pedestrian detection method based on YOLOv3. Computer Knowledge and Technology, 2020, 16(8): 192-193, 198.
URL
|
5 |
HONG W W, MA Z H, et al. Detection of green asparagus in complex environments based on the improved YOLOv5 algorithm. Sensors, 2023, 23, 1562.
doi: 10.3390/s23031562
|
6 |
WANG Q, FENG W Q, YAO L F, et al. TPH-YOLOv5-air: airport confusing object detection via adaptively spatial feature fusion. Remote Sensing, 2023, 15(15): 3883.
doi: 10.3390/rs15153883
|
7 |
|
8 |
邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究. 计算机工程与应用, 2022, 58(13): 63- 73.
URL
|
|
QIU T H, WANG L, WANG P, et al. Research on object detection algorithm based on improved YOLOv5. Computer Engineering and Applications, 2022, 58(13): 63- 73.
URL
|
9 |
孙传猛, 王燕平, 王冲, 等. 融合改进YOLOv3与三次样条插值的煤岩界面识别方法. 采矿与岩层控制工程学报, 2022, 4(1): 81- 90.
URL
|
|
SUN C M, WANG Y P, WANG C, et al. Coal-rock interface identification method based on improved YOLOv3 and cubic spline interpolation. Journal of Mining and Strata Control Engineering, 2022, 4(1): 81- 90.
URL
|
10 |
王程, 刘元盛, 刘圣杰. 基于改进YOLOv4的小目标行人检测算法. 计算机工程, 2023, 49(2): 296-302, 313.
URL
|
|
WANG C, LIU Y S, LIU S J. Small-target pedestrian-detection algorithm based on improved YOLOv4. Computer Engineering, 2023, 49(2): 296-302, 313.
URL
|
11 |
严开忠, 马国梁, 许立松, 等. 基于改进YOLOv3的机载平台目标检测算法. 电光与控制, 2021, 28(5): 70- 74.
URL
|
|
YAN K Z, MA G L, XU L S, et al. Improved YOLOv3 based target detection algorithm for airborne platform. Electronics Optics & Control, 2021, 28(5): 70- 74.
URL
|
12 |
王艺成, 张国良, 张自杰. 基于改进YOLOv5的小目标检测方法. 计算机与现代化, 2023,(5): 100- 105.
URL
|
|
WANG Y C, ZHANG G L, ZHANG Z J. Small object detection method based on improved YOLOv5. Computer and Modernization, 2023,(5): 100- 105.
URL
|
13 |
李文豪, 周斌, 胡波, 等. 基于轻量化网络的遮挡人脸检测. 中南民族大学学报(自然科学版), 2022, 41(3): 339- 346.
URL
|
|
LI W H, ZHOU B, HU B, et al. Occlusion face detection based on lightweight network. Journal of South-Central Minzu University (Natural Science Edition), 2022, 41(3): 339- 346.
URL
|
14 |
李闻, 李小春, 闫昊雷. 基于改进YOLO v3的PCB缺陷检测. 电光与控制, 2022, 29(4): 106- 111.
URL
|
|
LI W, LI X C, YAN H L. PCB defect detection based on improved YOLO v3. Electronics Optics & Control, 2022, 29(4): 106- 111.
URL
|
15 |
|
16 |
ZHAN Y, YU J. Multi-task compositional network for visual relationship detection. International Journal of Computer Vision, 2020, 128(8): 2146- 2165.
|
17 |
|
18 |
杨永波, 李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法. 计算机工程与应用, 2022, 58(9): 201- 207.
URL
|
|
YANG Y B, LI D. Lightweight helmet wearing detection algorithm of improved YOLOv5. Computer Engineering and Applications, 2022, 58(9): 201- 207.
URL
|
19 |
WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware ReAssembly of FEatures[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 458-467.
|
20 |
WU D L, JIANG S, ZHAO E L, et al. Detection of camellia oleifera fruit in complex scenes by using YOLOv7 and data augmentation. Applied Sciences, 2022, 12(22): 11318.
|
21 |
ABOAH A, WANG B, BAGCI U, et al. Real-time multi-class helmet violation detection using few-shot data sampling technique and YOLOv8[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 5350-5358.
|
22 |
|
23 |
LAWAL O M. YOLOv5-LiNet: a lightweight network for fruits instance segmentation. PLoS One, 2023, 18(3): e0282297.
|
24 |
KUMAR S, KUMAR A, KUMAR K. GhostNet-YOLO algorithm for object detection in UAV image[C]//Proceedings of the 7th International Conference on Image Information Processing. Washington D. C., USA: IEEE Press, 2023: 293-299.
|
25 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 2781-2795.
|