1 |
AIT OUALLANE A , BAKALI A , BAHNASSE A , et al. Fusion of engineering insights and emerging trends: intelligent urban traffic management system. Information Fusion, 2022, 88, 218- 248.
doi: 10.1016/j.inffus.2022.07.020
|
2 |
张小瑞, 陈旋, 孙伟, 等. 基于深度学习的车辆再识别研究进展. 计算机工程, 2020, 46 (11): 1- 11.
doi: 10.19678/j.issn.1000-3428.0058107
|
|
ZHANG X R , CHEN X , SUN W , et al. Progress of vehicle re-identification research based on deep learning. Computer Engineering, 2020, 46 (11): 1- 11.
doi: 10.19678/j.issn.1000-3428.0058107
|
3 |
SHOKROLAH S M , MORRIS B T . Vision-based turning movement monitoring: count, speed [WT《Times New Roman》] & waiting time estimation. IEEE Intelligent Transportation Systems Magazine, 2016, 8 (1): 23- 34.
doi: 10.1109/MITS.2015.2477474
|
4 |
DAN Z C, EINFALT M, LIENHART R. Refining joint locations for human pose tracking in sports videos[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 1-10.
|
5 |
|
6 |
BASTANI F, MADDEN S. OTIF: efficient tracker pre-processing over large video datasets[C]// Proceedings of the 2022 International Conference on Management of Data. New York, USA: ACM Press, 2022: 2091-2104.
|
7 |
HSIEH K, ANANTHANARAYANAN G, BODÍK P, et al. Focus: querying large video datasets with low latency and low cost[C]//Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation. Washington D. C., USA: IEEE Press, 2018: 269-286.
|
8 |
DU K T, PERVAIZ A, YUAN X, et al. Server-driven video streaming for deep learning inference[C]//Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. New York, USA: ACM Press, 2020: 557-570.
|
9 |
KANG D, BAILIS P D, ZAHARIA M. BlazeIt: optimizing declarative aggregation and limit queries for neural network-based video analytics[EB/OL]. [2023-10-20]. https://arxiv.org/abs/1805.01046.
|
10 |
NIGADE V, WANG L, BAL H. Clownfish: edge and cloud symbiosis for video stream analytics[C]//Proceedings of the IEEE/ACM Symposium on Edge Computing. Washington D. C., USA: IEEE Press, 2020: 55-69.
|
11 |
CANEL C , KIM T , ZHOU G , et al. Scaling video analytics on constrained edge nodes. Proceedings of Machine Learning and Systems, 2019, 1, 406- 417.
|
12 |
|
13 |
LI Y Q, PADMANABHAN A, ZHAO P Z, et al. Reducto: on-camera filtering for resource-efficient real-time video analytics[C]//Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. New York, USA: ACM Press, 2020: 359-376.
|
14 |
CHEN T Y H, RAVINDRANATH L, DENG S, et al. Glimpse: continuous, real-time object recognition on mobile devices[C]//Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. New York, USA: ACM Press, 2015: 155-168.
|
15 |
KANG D, GUIBAS J, BAILIS P D, et al. TASTI: semantic indexes for machine learning-based queries over unstructured data[C]//Proceedings of the 2022 International Conference on Management of Data. New York, USA: ACM Press, 2022: 1934-1947.
|
16 |
AGARWAL N, NETRAVALI R. Boggart: towards general-purpose acceleration of retrospective video analytics[C]//Proceedings of the 20th USENIX Symposium on Networked Systems Design and Implementation. [S. l. ]: USENIX, 2023: 933-951.
|
17 |
XU M, XU T, LIU Y, et al. Video analytics with zero-streaming cameras[C]//Proceedings of 2021 USENIX Annual Technical Conference. [S. l. ]: USENIX, 2021: 459-472.
|
18 |
MOLL O, BASTANI F, MADDEN S, et al. ExSample: efficient searches on video repositories through adaptive sampling[C]//Proceedings of the IEEE 38th International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2022: 2956-2968.
|
19 |
HAN S, SHEN H C, PHILIPOSE M, et al. MCDNN: an approximation-based execution framework for deep stream processing under resource constraints[C]//Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. New York, USA: ACM Press, 2016: 123-136.
|
20 |
ZHANG H, ANANTHANARAYANAN G, BODIK P, et al. Live video analytics at scale with approximation and delay-tolerance[C]//Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation. [S. l. ]: USENIX, 2017: 377-392.
|
21 |
RAN X K, CHEN H, ZHU X D, et al. DeepDecision: a mobile deep learning framework for edge video analytics[C]//Proceedings of IEEE Conference on Computer Communications. Washington D. C., USA: IEEE Press, 2018: 1421-1429.
|
22 |
JIANG J C, ANANTHANARAYANAN G, BODIK P, et al. Chameleon: scalable adaptation of video analytics[C]//Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. New York, USA: ACM Press, 2018: 253-266.
|
23 |
CAO J, HADIDI R, ARULRAJ J, et al. THIA: accelerating video analytics using early inference and fine-grained query planning[EB/OL]. [2023-10-20]. https://arxiv.org/abs/2102.08481.
|
24 |
XU R, ZHANG C L, WANG P C, et al. ApproxDet: content and contention-aware approximate object detection for mobiles[C]//Proceedings of the 18th Conference on Embedded Networked Sensor Systems. New York, USA: ACM Press, 2020: 449-462.
|
25 |
HWANG J, KIM M, KIM D, et al. CoVA: exploiting compressed-domain analysis to accelerate video analytics[C]//Proceedings of 2022 USENIX Annual Technical Conference. [S. l. ]: USENIX, 2022: 707-722.
|
26 |
RŮŽIČKA V, FRANCHETTI F. Fast and accurate object detection in high resolution 4K and 8K video using GPUs[C]//Proceedings of IEEE High Performance Extreme Computing Conference. Washington D. C., USA: IEEE Press, 2018: 1-7.
|
27 |
SUTTON R S , BARTO A G . Reinforcement learning: an introduction. Cambridge, USA: MIT Press, 2018.
|
28 |
LOEWENHERZ F , BAHL V , WANG Y H . Video analytics towards vision zero. Institute of Transportation Engineers ITE Journal, 2017, 87 (3): 25- 28.
|