1 |
LAKOFF G , JOHNSON M . Conceptual metaphor in everyday language. The Journal of Philosophy, 1980, 77 (8): 453.
doi: 10.2307/2025464
|
2 |
SHUTOVA E. Models of metaphor in NLP[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2010: 688-697.
|
3 |
杨春霞, 韩煜, 桂强, 等. 融合RoBERTa-GCN-Attention的隐喻识别与情感分类模型. 小型微型计算机系统, 2024, 45 (3): 576- 583.
|
|
YANG C X , HAN Y , GUI Q , et al. Metaphor recognition and emotion classification model based on RoBERTa-GCN-Attention. Journal of Chinese Computer Systems, 2024, 45 (3): 576- 583.
|
4 |
|
5 |
BIZZONI Y, GHANIMIFARD M. Bigrams and BiLSTMs two neural networks for sequential metaphor detection[C]//Proceedings of the Workshop on Figurative Language Processing. New Orleans, USA: Association for Computational Linguistics, 2018: 91-101.
|
6 |
LE D, THAI M T, NGUYEN T H. Multi-task learning for metaphor detection with graph convolutional neural networks and word sense disambiguation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2020, 34(5): 8139-8146.
|
7 |
朱嘉莹, 王荣波, 黄孝喜, 等. 基于Bi-LSTM的多层面隐喻识别方法. 大连理工大学学报, 2020, 60 (2): 209- 215.
|
|
ZHU J Y , WANG R B , HUANG X X , et al. Multi-layer metaphor recognition method based on Bi-LSTM. Journal of Dalian University of Technology, 2020, 60 (2): 209- 215.
|
8 |
WU C H, WU F Z, CHEN Y B, et al. Neural metaphor detecting with CNN-LSTM model[C]//Proceedings of the 2018 Workshop on Figurative Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 110-114.
|
9 |
郭樊容, 黄孝喜, 王荣波, 等. 基于Transformer和图卷积神经网络的隐喻识别. 数据分析与知识发现, 2022, 6 (4): 120- 129.
|
|
GUO F R , HUANG X X , WANG R B , et al. Identifying metaphor with Transformer and graph convolutional network. Data Analysis and Knowledge Discovery, 2022, 6 (4): 120- 129.
|
10 |
CHEN, Z H, FU L J, WANG H J, et al. A metaphor recognition model based on LSTM and keyword similarity computation[C]//Proceedings of the 33rd Chinese Control and Decision Conference. Kunming, China: Chinese Association of Automation, 2021: 2347-2352.
|
11 |
SU C D, FUKUMOTO F, HUANG X X, et al. DeepMet: a reading comprehension paradigm for token-level metaphor detection[C]//Proceedings of the 2nd Workshop on Figurative Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2020: 30-39.
|
12 |
ZHANG S L, LIU Y. Metaphor detection via linguistics enhanced siamese network[C]//Proceedings of the 29th International Conference on Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 4149-4159.
|
13 |
CUI Y M , CHE W X , LIU T , et al. Pre-training with whole word masking for Chinese BERT. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29, 3504- 3514.
doi: 10.1109/TASLP.2021.3124365
|
14 |
|
15 |
ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2016: 207-212.
|
16 |
杨春霞, 宋金剑, 姚思诚. 基于深度BiLSTM和图卷积神经网络的方面级情感分析. 计算机工程与科学, 2022, 44 (10): 1893- 1900.
|
|
YANG C X , SONG J J , YAO S C . Aspect-level sentiment analysis based on deep BiLSTM and graph convolutional neural networks. Computer Engineering and Science, 2022, 44 (10): 1893- 1900.
|
17 |
邓昕, 刘朝晖, 欧阳燕, 等. 基于CNN CBAM-BiGRU Attention的加密恶意流量识别. 计算机工程, 2023, 49 (11): 178- 186.
doi: 10.19678/j.issn.1000-3428.0066558
|
|
DENG X , LIU Z H , OU Y Y , et al. Encrypted malicious traffic identification based on CNN CBAM-BiGRU Attention. Computer Engineering, 2023, 49 (11): 178- 186.
doi: 10.19678/j.issn.1000-3428.0066558
|
18 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
|
19 |
CHOCKLER H, FARCHI E, GODLIN B, et al. Cross-entropy based testing[C]//Proceedings of the 7th Formal Methods in Computer Aided Design. Washington D.C., USA: IEEE Press, 2007: 101-108.
|
20 |
苏魁麟, 张凯, 吕学强, 等. 基于融合模型的名词隐喻识别. 计算机技术与发展, 2022, 32 (6): 192- 197.
|
|
SU K L , ZHANG K , LV X Q , et al. Noun metaphor recognition based on fusion model. Computer Technology and Development, 2022, 32 (6): 192- 197.
|
21 |
LEONG C W B, KLEBANOV B B, SHUTOVA E. A report on the 2018 VUA metaphor detection shared task[C]//Proceedings of the Workshop on Figurative Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 56-66.
|
22 |
LEONG C W B, KLEBANOV B B, HAMILL C, et al. A report on the 2020 VUA and TOEFL metaphor detection shared task[C]//Proceedings of the 2nd Workshop on Figurative Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2020: 18-29.
|
23 |
张冬瑜, 崔紫娟, 李映夏, 等. 基于Transformer和BERT的名词隐喻识别. 数据分析与知识发现, 2020, 4 (4): 100- 108.
|
|
ZHANG D Y , CUI Z J , LI Y X , et al. Identifying noun metaphors with Transformer and BERT[. Data Analysis and Knowledge Discovery, 2020, 4 (4): 100- 108.
|
24 |
GONG H Y, GUPTA K, JAIN A, et al. IlliniMet: illinois system for metaphor detection with contextual and linguistic information[C]//Proceedings of the 2nd Workshop on Figurative Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2020: 146-153.
|
25 |
YANG Q M, YU L, TIAN S W, et al. Fine-grained discourse for metaphor detection[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2021: 1-6.
|
26 |
SONG W, ZHOU S, FU R, et al. Verb metaphor detection via contextual relation learning[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 4240-4251.
|
27 |
高永兵, 马宁. 基于ERNIE和BiLSTM的中文名词隐喻识别. 内蒙古科技大学学报, 2021, 40 (3): 276- 281.
|
|
GAO Y B , MA N . Chinese noun metaphor recognition based on ERNIE and BiLSTM. Journal of Inner Mongolia University of Science and Technology, 2021, 40 (3): 276- 281.
|