| 1 |
DAS A, SABUT S K. Kernelized fuzzy C-means clustering with adaptive thresholding for segmenting liver tumors. Procedia Computer Science, 2016, 92, 389- 395.
doi: 10.1016/j.procs.2016.07.395
|
| 2 |
张小强, 熊博莅, 匡纲要. 一种基于变化检测技术的SAR图像舰船目标鉴别方法. 电子与信息学报, 2015, 37(1): 63- 70.
|
|
ZHANG X Q, XIONG B L, KUANG G Y. A ship target discrimination method based on change detection in SAR imagery. Journal of Electronics & Information Technology, 2015, 37(1): 63- 70.
|
| 3 |
ZENG Y Z, ZHAO Y Q, LIAO S H, et al. Liver vessel segmentation based on centerline constraint and intensity model. Biomedical Signal Processing and Control, 2018, 45, 192- 201.
doi: 10.1016/j.bspc.2018.05.035
|
| 4 |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504- 507.
doi: 10.1126/science.1127647
|
| 5 |
FUKUSHIMA K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980, 36(4): 193- 202.
doi: 10.1007/BF00344251
|
| 6 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
| 7 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|
| 8 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation. Berlin, Germany: Springer, 2015.
|
| 9 |
|
| 10 |
JIN Q G, MENG Z P, SUN C M, et al. RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans. Frontiers in Bioengineering and Biotechnology, 2020, 8, 605132.
doi: 10.3389/fbioe.2020.605132
|
| 11 |
刘一鸣, 肖志勇. 基于特征融合的肝脏肿瘤自动分割方法. 激光与光电子学进展, 2021, 58(14): 1417001.
|
|
LIU Y M, XIAO Z Y. Automatic segmentation algorithm of liver tumor based on feature fusion. Laser & Optoelectronics Progress, 2021, 58(14): 1417001.
|
| 12 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2023-12-01]. https://arxiv.org/abs/2010.11929.
|
| 13 |
|
| 14 |
VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation. Berlin, Germany: Springer, 2021.
|
| 15 |
WANG H Y, ZHU Y K, GREEN B, et al. Axial-DeepLab: stand-alone axial-attention for panoptic segmentation[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 108-126.
|
| 16 |
CHEN W L, ZHANG Y, HE J J, et al. Prostate segmentation using 2D bridged U-net[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2019: 1- 7.
|
| 17 |
JHA D, RIEGLER M A, JOHANSEN D, et al. Double U-Net: a deep convolutional neural network for medical image segmentation[C]//Proceedings of the 33rd IEEE International Symposium on Computer-Based Medical Systems. Washington D. C., USA: IEEE Press, 2020: 558-564.
|
| 18 |
|
| 19 |
KALUVA K C, KHENED M, KORI A, et al. 2D-densely connected convolution neural networks for automatic liver and tumor segmentation[EB/OL]. [2023-12-01]. https://arxiv.org/abs/1802.02182v1.
|
| 20 |
严春满, 王铖. 卷积神经网络模型发展及应用. 计算机科学与探索, 2021, 15(1): 27- 46.
|
|
YAN C M, WANG C. Development and application of convolutional neural network model. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 27- 46.
|
| 21 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 4700-4708.
|
| 22 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 30-42.
|
| 23 |
赵杰, 孙伟, 徐中达, 等. 基于形态学预处理的数字图像相关方法研究. 实验力学, 2022, 37(5): 629- 637.
|
|
ZHAO J, SUN W, XU Z D, et al. Study on the method of digital image correlation based morphologicalpre-processing. Journal of Experimental Mechanics, 2022, 37(5): 629- 637.
|
| 24 |
KAVUR A E, GEZER N S, BARıŞ M, et al. CHAOS challenge-combined healthy abdominal organ segmentation. Medical Image Analysis, 2021, 69, 101950.
doi: 10.1016/j.media.2020.101950
|
| 25 |
|