| 1 |
QURESHI I, YAN J H, ABBAS Q, et al. Medical image segmentation using deep semantic-based methods: a review of techniques, applications and emerging trends. Information Fusion, 2023, 90, 316- 352.
doi: 10.1016/j.inffus.2022.09.031
|
| 2 |
贾小慧, 张雪英, 王夙喆, 等. 基于双向循环U-Net模型的脑卒中病灶分割方法. 太原理工大学学报, 2022, 53(6): 1127- 1133.
|
|
JIA X H, ZHANG X Y, WANG S Z, et al. Segmentation method of stroke lesions based on bidirectional recurrent U-Net model. Journal of Taiyuan University of Technology, 2022, 53(6): 1127- 1133.
|
| 3 |
CHEN Z. Medical image segmentation based on U-Net. Journal of Physics: Conference Series, 2023, 2547(1): 012010.
doi: 10.1088/1742-6596/2547/1/012010
|
| 4 |
QI K H, YANG H, LI C, et al. X-Net: brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2019: 247-255.
|
| 5 |
RUAN J C, XIE M Y, GAO J S, et al. EGE-UNet: an efficient group enhanced unet for skin lesion segmentation[EB/OL]. [2024-02-18]. https://arxiv.org/pdf/2307.08473.
|
| 6 |
CHEN J N, LU Y Y, YU Q H, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. [2024-02-18]. https://arxiv.org/pdf/2102.04306.
|
| 7 |
WANG S S, LI C, WANG R P, et al. Annotation-efficient deep learning for automatic medical image segmentation. Nature Communications, 2021, 12(1): 5915.
doi: 10.1038/s41467-021-26216-9
|
| 8 |
梁爽. 基于深度神经网络的医学图像特征学习与分析[D]. 北京: 北京科技大学, 2022.
|
|
LIANG S. Deep neural network-based feature learning methods for medical image analysis[D]. Beijing: University of Science and Technology Beijing, 2022. (in Chinese)
|
| 9 |
YANG X L, SONG Z X, KING I, et al. A survey on deep semi-supervised learning. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(9): 8934- 8954.
|
| 10 |
CHEN B, JIANG J, WANG X, et al. Debiased self-training for semi-supervised learning. Advances in Neural Information Processing Systems, 2022, 35, 32424- 32437.
|
| 11 |
ZHENG X, FU C, XIE H, et al. Uncertainty-aware deep co-training for semi-supervised medical image segmentation[EB/OL]. [2024-02-18]. https://arxiv.org/pdf/2111.11629.
|
| 12 |
SOULY N, SPAMPINATO C, SHAH M. Semi supervised semantic segmentation using generative adversarial network[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 5688-5696.
|
| 13 |
CHAITANYA K, ERDIL E, KARANI N, et al. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Medical Image Analysis, 2023, 87, 102792.
doi: 10.1016/j.media.2023.102792
|
| 14 |
ZHANG Y Y, GONG Z Q, ZHAO X Y, et al. Uncertainty guided ensemble self-training for semi-supervised global field reconstruction. Complex & Intelligent Systems, 2024, 10(1): 469- 483.
|
| 15 |
LIU X F, XING F X, SHUSHARINA N, et al. ACT: semi-supervised domain-adaptive medical image segmentation with asymmetric co-training[EB/OL]. [2024-02-18]. https://arxiv.org/pdf/2206.02288.
|
| 16 |
PENG J Z, ESTRADA G, PEDERSOLI M, et al. Deep co-training for semi-supervised image segmentation. Pattern Recognition, 2020, 107, 107269.
doi: 10.1016/j.patcog.2020.107269
|
| 17 |
HAN L Y, HUANG Y Z, DOU H R, et al. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Computer Methods and Programs in Biomedicine, 2020, 189, 105275.
doi: 10.1016/j.cmpb.2019.105275
|
| 18 |
邵伟志, 潘丽丽, 雷前慧, 等. 基于一致性正则化与熵最小化的半监督学习算法. 郑州大学学报(理学版), 2021, 53(3): 79- 84.
|
|
SHAO W Z, PAN L L, LEI Q H, et al. Semi-supervised learning algorithm based on the consistency regularization and entropy minimization. Journal of Zhengzhou University (Science Edition), 2021, 53(3): 79- 84.
|
| 19 |
|
| 20 |
|
| 21 |
TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[EB/OL]. [2024-02-18]. https://arxiv.org/pdf/1703.01780.
|
| 22 |
LU L Y, YIN M X, FU L Y, et al. Uncertainty-aware pseudo-label and consistency for semi-supervised medical image segmentation. Biomedical Signal Processing and Control, 2023, 79, 583- 592.
|
| 23 |
LUO X, HU M, SONG T, et al. Semi-supervised medical image segmentation via cross teaching between cnn and transformer[EB/OL]. [2024-02-18]. https://arxiv.org/pdf/2112.04894.
|
| 24 |
WU Y, GE Z, ZHANG D, et al. Mutual consistency learning for semi-supervised medical image segmentation. Medical Image Analysis, 2022, 81, 102530.
doi: 10.1016/j.media.2022.102530
|
| 25 |
OUALI Y, HUDELOT C, TAMI M. Semi-supervised semantic segmentation with cross-consistency training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 12674-12684.
|
| 26 |
LUO X D, LIAO W J, CHEN J N, et al. Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2021: 318-329.
|
| 27 |
谢娟英, 张凯云. SOSNet: 一种非对称编码器-解码器结构的非小细胞肺癌CT图像分割模型. 电子学报, 2024, 52(3): 824- 837.
|
|
XIE J Y, ZHANG K Y. SOSNet: an asymmetric encoder-decoder structure model for automatic segmenting non-small cell lung cancer CT images. Acta Electronica Sinica, 2024, 52(3): 824- 837.
|
| 28 |
LAI W S, HUANG J B, AHUJA N, et al. Deep laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 624-632.
|
| 29 |
|
| 30 |
HURTIK P, TOMASIELLO S, HULA J, et al. Binary cross-entropy with dynamical clipping. Neural Computing and Applications, 2022, 34(14): 12029- 12041.
doi: 10.1007/s00521-022-07091-x
|
| 31 |
YU L Q, WANG S J, LI X M, et al. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation[C]//Proceedings of Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). New York, USA: ACM Press, 2019: 605-613.
|
| 32 |
LIEW S L, ANGLIN J M, BANKS N W, et al. A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Scientific Data, 2018, 5(1): 180001- 180011.
doi: 10.1038/sdata.2018.1
|
| 33 |
BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514- 2525.
doi: 10.1109/TMI.2018.2837502
|
| 34 |
SETIAWAN A W. Image segmentation metrics in skin lesion: accuracy, sensitivity, specificity, dice coefficient, Jaccard index, and Matthews correlation coefficient[C]//Proceedings of International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM). Washington D. C., USA: IEEE Press, 2020: 97-102.
|
| 35 |
苏晓东, 李世洲, 赵佳圆, 等. 基于多级叠加和注意力机制的图像语义分割. 计算机工程, 2023, 49(9): 265-271, 278.
doi: 10.19678/j.issn.1000-3428.0065940
|
|
SU X D, LI S Z, ZHAO J Y, et al. Image semantic segmentation based on multi-level superposition and attention mechanism. Computer Engineering, 2023, 49(9): 265-271, 278.
doi: 10.19678/j.issn.1000-3428.0065940
|
| 36 |
胡帅, 李华玲, 郝德琛. 改进U-Net的多级边缘增强医学图像分割网络. 计算机工程, 2024, 50(4): 286- 293.
doi: 10.19678/j.issn.1000-3428.0067779
|
|
HU S, LI H L, HAO D C. Improved multistage edge enhanced medical image segmentation network of U-Net. Computer Engineering, 2024, 50(4): 286- 293.
doi: 10.19678/j.issn.1000-3428.0067779
|
| 37 |
CHEN G P, DAI Y, ZHANG J X, et al. MBANet: multi-branch aware network for kidney ultrasound images segmentation. Computers in Biology and Medicine, 2022, 141, 105140.
doi: 10.1016/j.compbiomed.2021.105140
|
| 38 |
HUTTENLOCHER D P, KLANDERMAN G A, RUCKLIDGE W J. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850- 863.
doi: 10.1109/34.232073
|