Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (10): 295-307. doi: 10.19678/j.issn.1000-3428.0069662

• Graphics and Image Processing • Previous Articles     Next Articles

Medical Image Segmentation Based on Semi-Supervised Multi-Scale Consistency Learning

LI Ping1, ZHANG Xueying1,*(), WANG Suzhe1, LI Fenglian1, ZHANG Hua2   

  1. 1. College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2. Department of Imaging, the First Hospital of Shanxi Medical University, Taiyuan 030024, Shanxi, China
  • Received:2024-03-26 Revised:2024-05-31 Online:2025-10-15 Published:2024-08-06
  • Contact: ZHANG Xueying

基于半监督多尺度一致性学习的医学影像分割

李萍1, 张雪英1,*(), 王夙喆1, 李凤莲1, 张华2   

  1. 1. 太原理工大学电子信息与光学工程学院, 山西 太原 030024
    2. 山西医科大学第一医院影像科, 山西 太原 030024
  • 通讯作者: 张雪英
  • 基金资助:
    国家自然科学基金面上项目(62171307); 山西省基础研究计划(自由探索类)面上项目(202103021224113)

Abstract:

Deep supervised learning has made remarkable achievements in medical image segmentation. However, it is heavily dependent on a large amount of high-quality, labeled medical image data, which are difficult to obtain. To address this issue, this paper proposes a Semi-Supervised Multi-scale Consistency Network (SSMC-Net) for medical image lesion segmentation. The network architecture of SSMC-Net is built upon a joint training framework, learning from both labeled and unlabeled data. Moreover, to alleviate the loss of details during the down-sampling and up-sampling processes, a Multi-scale Subtraction (MS) module is incorporated to capture a broader spectrum of differential features, including the Subtraction Unit (SU) and Multiple Feature Fusion Unit (MFFU). The SU is responsible for extracting differential information from the multi-scale encoding outputs, and the MFFU selectively merges the most correlated features to provide more precise interactive representations for the decoder. Finally, the loss function is redesigned. The supervised part comprehensively calculates the pixel-level information outputs at various resolutions, whereas the unsupervised part introduces a multi-scale joint consistency loss and designs a distance function to diminish the impact of unreliable samples. Ablation and comparative experiments on the CPD, ATLAS, and ACDC datasets demonstrate that the proposed method achieves superior performance in terms of the Dice Similarity Coefficient (DSC) and F2 value compared to existing semi-supervised segmentation methods, even with only 50% labeled data.

Key words: lesion segmentation, semi-supervised learning, consistency regularization, Multi-scale Subtraction (MS), multiple feature fusions

摘要:

深度监督学习在医学图像分割领域已经取得了显著成就,但它在很大程度上依赖于大量标签数据,难以获取高质量标签的医学图像数据。基于此,提出一种半监督多尺度一致性网络(SSMC-Net)的医学图像病灶分割方法。该方法构建的网络采用联合训练架构,同时从标签数据和无标签数据中学习。此外,为了减少下采样和上采样过程中细节信息的丢失,设计了多尺度减法(MS)模块来捕获更广泛的差分特征,包括减法单元(SU)和多特征融合单元(MFFU)。SU负责提取多尺度编码器中的差分信息,MFFU有选择性地融合其中最相关的重要特征,为解码器提供更精确的特征表示。最后,重新设计了损失函数,在有监督部分综合计算各分辨率下的像素级输出的损失值,在无监督部分提出多尺度联合一致性损失,并设计距离函数来减少不可靠样本的影响。在CPD、ATLAS和ACDC数据集上的实验结果表明,相比现有半监督分割方法,该方法在50%标签占比下的Dice相似系数(DSC)、F2值等关键评价指标更优。

关键词: 病灶分割, 半监督学习, 一致性正则化, 多尺度减法, 多特征融合