1 |
QU P , YANG L , ZHENG W M , et al. A review of basic software for brain-inspired computing. CCF Transactions on High Performance Computing, 2022, 4 (1): 34- 42.
doi: 10.1007/s42514-022-00092-1
|
2 |
张铁林, 徐波. 脉冲神经网络研究现状及展望. 计算机学报, 2021, 44 (9): 1767- 1785.
|
|
ZHANG T L , XU B . Research advances and perspectives on spiking neural networks. Chinese Journal of Computers, 2021, 44 (9): 1767- 1785.
|
3 |
GEWALTIG M O , DIESMANN M . NEST (NEural Simulation Tool). Scholarpedia, 2007, 2 (4): 1430.
doi: 10.4249/scholarpedia.1430
|
4 |
STIMBERG M , BRETTE R , GOODMAN D F . Brian 2, an intuitive and efficient neural simulator. eLife, 2019, 8, e47314.
doi: 10.7554/eLife.47314
|
5 |
|
6 |
JORDAN J , IPPEN T , HELIAS M , et al. Extremely scalable spiking neuronal network simulation code: from laptops to exascale computers. Frontiers in Neuroinformatics, 2018, 12, 2.
doi: 10.3389/fninf.2018.00002
|
7 |
PRONOLD J , JORDAN J , WYLIE B J N , et al. Routing brain traffic through the von Neumann bottleneck: parallel sorting and refactoring. Frontiers in Neuroinformatics, 2021, 15, 785068.
|
8 |
|
9 |
栗学磊, 朱效民, 魏彦杰, 等. 神威太湖之光加速计算在脑神经网络模拟中的应用. 计算机学报, 2020, 43 (6): 1025- 1037.
|
|
LI X L , ZHU X M , WEI Y J , et al. Application of Sunway TaihuLight accelerating in brain neural network simulation. Chinese Journal of Computers, 2020, 43 (6): 1025- 1037.
|
10 |
ALBERS J , PRONOLD J , KURTH A C , et al. A modular workflow for performance benchmarking of neuronal network simulations. Frontiers in Neuroinformatics, 2022, 16, 837549.
doi: 10.3389/fninf.2022.837549
|
11 |
FERNANDEZ-MUSOLES C , COCA D , RICHMOND P . Communication sparsity in distributed spiking neural network simulations to improve scalability. Gene, 2019, 13, 19.
|
12 |
|
13 |
TIDDIA G , GOLOSIO B , ALBERS J , et al. Fast simulation of a multi-area spiking network model of macaque cortex on an MPI-GPU cluster. Frontiers in Neuroinformatics, 2022, 16, 883333.
doi: 10.3389/fninf.2022.883333
|
14 |
|
15 |
KARYPIS G , KUMAR V . A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 1998, 20 (1): 359- 392.
doi: 10.1137/S1064827595287997
|
16 |
|
17 |
PARK J , YU T , JOSHI S , et al. Hierarchical address event routing for reconfigurable large-scale neuromorphic systems. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (10): 2408- 2422.
doi: 10.1109/TNNLS.2016.2572164
|
18 |
GALLUPPI F, DAVIES S, RAST A, et al. A hierachical configuration system for a massively parallel neural hardware platform[C]//Proceedings of the 9th Conference on Computing Frontiers. New York, USA: ACM Press, 2012: 183-192.
|
19 |
LEE M K F , CUI Y N , SOMU T , et al. A system-level simulator for RRAM-based neuromorphic computing chips. ACM Transactions on Architecture and Code Optimization, 2019, 15 (4): 1- 24.
|
20 |
BALAJI A , CATTHOOR F , DAS A , et al. Mapping spiking neural networks to neuromorphic hardware. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 28 (1): 76- 86.
|
21 |
FURBER S B , LESTER D R , PLANA L A , et al. Overview of the SpiNNaker system architecture. IEEE Transactions on Computers, 2013, 62 (12): 2454- 2467.
|
22 |
华夏, 朱铮皓, 徐聪, 等. 基于精准通信建模的脉冲神经网络工作负载自动映射器. 计算机应用, 2023, 43 (3): 827- 834.
|
|
HUA X , ZHU Z H , XU C , et al. Workload automatic mapper for spiking neural network based on precise communication modeling. Journal of Computer Applications, 2023, 43 (3): 827- 834.
|
23 |
TRENSCH G , MORRISON A . A system-on-chip based hybrid neuromorphic compute node architecture for reproducible hyper-real-time simulations of spiking neural networks. Frontiers in Neuroinformatics, 2022, 16, 884033.
|
24 |
DEVECI M , KAYA K , UÇAR B , et al. Hypergraph partitioning for multiple communication cost metrics: model and methods. Journal of Parallel and Distributed Computing, 2015, 77, 69- 83.
|
25 |
QU P , LIN H , PANG M , et al. ENLARGE: an efficient SNN simulation framework on GPU clusters. IEEE Transactions on Parallel and Distributed Systems: A Publication of the IEEE Computer Society, 2023 (9): 34.
|
26 |
|
27 |
|
28 |
YAN B C , XIAO L M , QIN G J , et al. QTMS: a quadratic time complexity topology-aware process mapping method for large-scale parallel applications on shared HPC system. Parallel Computing, 2020, 94, 102637.
|
29 |
VON KIRCHBACH K , SCHULZ C , TRÄFF J L . Better process mapping and sparse quadratic assignment. ACM Journal of Experimental Algorithmics, 2020, 25, 1- 19.
|
30 |
TAILLARD E . Robust taboo search for the quadratic assignment problem. Parallel Computing, 1991, 17 (4/5): 443- 455.
|
31 |
POTJANS T C , DIESMANN M . The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral Cortex, 2014, 24 (3): 785- 806.
|
32 |
SCHMIDT M , BAKKER R , HILGETAG C C , et al. Multi-scale account of the network structure of macaque visual cortex. Brain Structure and Function, 2018, 223 (3): 1409- 1435.
|