Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (4): 327-338. doi: 10.19678/j.issn.1000-3428.0069278

• Development Research and Engineering Application • Previous Articles     Next Articles

Lightweight Fry Detection Algorithm Based on Improved YOLOv8: FD-YOLO

WANG Zeyu1, XU Huiying1,*(), ZHU Xinzhong1, HUANG Xiao2, LIANG Jiajie1, LI Chen1   

  1. 1. School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    2. College of Education, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
  • Received:2024-01-22 Online:2025-04-15 Published:2025-04-18
  • Contact: XU Huiying

基于改进YOLOv8的轻量化鱼苗检测算法: FD-YOLO

王泽宇1, 徐慧英1,*(), 朱信忠1, 黄晓2, 梁佳杰1, 李琛1   

  1. 1. 浙江师范大学计算机科学与技术学院, 浙江 金华 321004
    2. 浙江师范大学教育学院, 浙江 金华 321004
  • 通讯作者: 徐慧英
  • 基金资助:
    国家自然科学基金(61976196); 浙江省自然科学基金重点项目(LZ22F030003); 国家级大学生创新训练计划重点项目(202310345042)

Abstract:

Based on deep learning, fish fry detection in aquaculture presents a potential for automated and precision management. To address the challenges of low device performance and high real-time requirements in fish fry detection, this paper proposes an improved lightweight fish fry detection algorithm called FD-YOLO. This algorithm replaces the original CSPDarkNet feature extraction network in YOLOv8 with a FasterNet variant and introduces Partial Convolutions (PConv) to reduce redundant computations and memory access. In the feature fusion stage, Depthwise Separable Convolutions (DWConv) are adopted, and the standard convolution process is decomposed into two relatively simple depthwise and pointwise convolutions executed in parallel, thereby further reducing the model complexity and computational resource demands. The model employs the Focal-EIoU loss function, enhancing detection accuracy and robustness. The experimental results demonstrate that the improved detection model significantly reduces the number of parameters and computational load by 91% and 85%, respectively. Moreover, the inference speed on the CPU is tripled compared with the baseline. The optimized fish fry detection algorithm effectively balances high precision with real-time performance, making it suitable for deployment on hardware platforms with limited resources. The enhanced algorithm demonstrates superior adaptability and practicality for addressing the critical needs of real-world aquaculture applications.

Key words: object detection, fry detection, lightweight, Partial Convolutions(PConv), Depthwise Separable Convolutions(DWConv)

摘要:

基于深度学习的鱼苗检测在水产养殖中的应用为自动化和精确化管理提供了可能。针对鱼苗检测中设备性能低、实时性要求高等问题, 提出一种改进YOLOv8的轻量化鱼苗检测算法FD-YOLO。将快速网络(FasterNet)替换YOLOv8原CSPDarkNet特征提取网络, 采用局部卷积(PConv)减少冗余计算和内存访问。在特征融合中引入深度可分离卷积(DWConv), 将标准卷积过程分解为相对简单的深度卷积和逐点卷积两个步骤并行处理, 进一步减少模型的复杂性和计算资源消耗。使用Focal-EIoU作为模型损失函数, 提高检测精度, 使得模型更具鲁棒性。实验结果表明, 改进后的检测模型参数量和计算量大幅降低, 模型参数量下降了91%, 计算量下降了85%, 在CPU上的推理速度加快了3倍。改进后的鱼苗检测算法能更好地兼顾高精度和实时性之间的平衡, 便于部署在资源有限的硬件平台上。

关键词: 目标检测, 鱼苗检测, 轻量化, 局部卷积, 深度可分离卷积