[1] He, Yu;Song, Kechen;Meng, Qinggang;Yan,
Yunhui.An End-to-End Steel Surface Defect
Detection Approach via Fusing Multiple Hierarchical
Features.[J].IEEE Transac-tions on Instrumentation
& Measurement,2020,Vol.69(4): 1493-1504
[2] Ghorai, S(Ghorai, Santanu);Mukherjee,
A(Mukherjee, Anirban);Gangadaran, M(Gangadaran,
M.);Dutta, PK(Dutta, PranabK.).Automatic Defect
Detection on Hot-Rolled Flat Steel Products[J].IEEETRANSACTIONS ON INSTRUMENTATION AND
MEASUREMENT,2013,Vol.62(3): 612-621
[3] 张文铠,刘佳.基于改进 YOLOv8s 的钢材表面缺陷
检 测 [J]. 北 京 信 息 科 技 大 学 学 报 ( 自 然 科 学
版),2023,38(06):33-40.
Zhang Wenjia,Liu Jia. Detection of steel surface
d efects based on improved YOLOv8s[J]. Journal of
Beijing University of Information Science and
Technology(Natural Science
Edition),2023,38(06):33-40.
[4] 谢竞,邓月明,王润民.改进 YOLOv8s 的交通标识检
测算法[J/OL].计算机工程:1-16[2024-03-25].
Xie Jing, Deng Yueming, Wang Runmin. Traffic sign
detection algorithm for improved
YOLOv8s[J/OL].Computer
Engineering:1-16[2024-03-25].
[5] 徐洪俊,唐自强,张锦东,朱沛华.钢材表面缺陷检测
的 YOLOv5s 算法优化研究[J].计算机工程与应用.
XU Hongjun,TANG Ziqiang,ZHANG Jindong,ZHU
Peihua3.Research on Optimization of YOLOv5s
Detection Algorithm for Steel Surface Defect[J].
Computer Engineering and Applications
[6] 周亚罗,武献超,刘文广,张瑞成.基于 STCS-YOLO
的带钢表面缺陷检测算法[J].中国冶金.
ZHOUYaluo1,WUXianchaol,LIUWenguang,ZHANG
Ruicheng.Defectdetection algorithm of strip surface
based on STCS-YOLO[J]. China Metallurgy
[7] 胡凯涛,马向华,孙向宇,刘闯.融合 Res2Net 和部分
卷积的带钢表面缺陷检测算法[J].计算机工程与应
用.
HU Kaitao,MA Xianghua,SUN Xiangyu,LIU Chuang.
Strip surface defect detection algorithm integrating
Res2Net and PConv[J]. Computer Engineering and
Applications.
[8] 李刚,邵瑞,周鸣乐等.基于注意力的轻量级工业产
品缺陷检测网络[J].计算机工程,2023,49(11):
275-283.
G. Li, R. Shao, M. Zhou, et al . Attention-based
lightweight defect detection network for industrial
products [J]. Computer Engineering, 2023,
49(11):275-283.
[9] 孙泽强,陈炳才,崔晓博等.融合频域注意力机制和
解耦头的YOLOv5 带钢表面缺陷检测[J].计算机应
用,2023,43(01):242-249.
SUN Zeqiang,CHEN Bingcai,CUI Xiaobo et al.
Surface defect detection of YOLOv5 strip steel by
integrating frequency domain attention mechanism
and decoupling head[J]. Computer
Applications,2023,43(01):242-249.
[10] 蒋博,万毅,谢显中.改进 YOLOv5s 的轻量化钢材表
面 缺 陷 检 测 模 型 [J]. 计 算 机 科
学,2023,50(S2):271-277.
JIANG Bo,WAN Yi,XIE Xianzhong. Improved
surface defect detection model for lightweight steel
with YOLOv5s[J]. Computer
Science,2023,50(S2):271-277.
[11] 曹义亲,伍铭林,徐露.基于改进 YOLOv5 算法的钢
材表面缺陷检测[J].图学学报,2023,第 44 卷(2):
335-345.
CAO Yi-qin, WU Ming-lin, XU Lu. Steel surface
defect detection based on improved YOLOv5
algorithm[J]. Journal of Graphics, 2023, 44(2):
335-345.
[12] Yaolei Qi;Yuting He;Xiaoming Qi;Yuan
Zhang;Guanyu Yang.Dynamic Snake Convolution
based on Topological Geometric Constraints for
Tubular Structure Segmenta-tion[J].2023,
[13] 蒋晨,钱永明,姚兴田,李壮.基于可变形卷积改进
SSD 算法的目标检测方法[J].电子测量技术,2022,
第 45 卷(16): 116-122Deformable Convolutional
Networks.
Jiang Chen Qian Yongming Yao Xingtian Li Zhuang.
Target detection method based on deformable
convolution improved SSD algorithm[J].
ELECTRONIC MEASUREMENT TECHNOLOGY.
2022,45(16):116-122 Deformable Convolutional
Networks.
[14] 黄凤琪,陈明,冯国富.基于可变形卷积的改进
YOLO 目标检测算法[J].计算机工程,2021,第 47 卷
(10): 269-275,282.
HUANG Fengqi,CHEN Ming,FENG Guofu.
Improved YOLO Object Detection Algorithm Based
on Deformable Convolution[J]. Computer
Engineering,2021,47(10):269-275,282.
[15] Bin Wang;Meng Wang;Jianzhong Yang;Hainan
Luo.YOLOv5-CD: Strip steel surface defect
detection method based on coordinate attention and a
decoupledhead[J].Measurement:Sensors,2023,Vol.30:
100909.
[16] Qibin Hou;Daquan Zhou;Jiashi Feng.CoordinateAttention for Efficient Mobile Network
Design[A].2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR)[C],2021
[17] Kun Liu;Nana Luo;Aimei Li;Ying Tian;Hasan
Sajid;Haiyong Chen.A New Self-Reference Image
De-composition Algorithm for Strip Steel Surface
Defect De-tection[J].IEEE Transactions on
Instrumentation and Measurement,2020,Vol.69(7):
4732-4741
[18] WOO S, Park J, LEE JY, etal. CBAM: Convolutional
Block Attention Module[J]. arXiv e-prints, 2018,
arXiv:1807.06521.
[19] Hu J, Shen L, Sun G. Squeeze-and-excitation
net?works[C]. Proceedings of the IEEE conference
on com?puter vision and pattern recognition. 2018:
7132-7141.
[20] 肖鹏程,徐文广,张妍等. 基于 SE 注意力机制的废
钢分类评级方法[J]. ,2023,45(08):1342-1352.DOI:
10.13374/j.issn2095-9389.2022.06.10.002.
XIAO Pengcheng, XU Wenguang, ZHANG Yan et al.
Scrap classification and rating method based on SE
attention mechanism[J]. ,2023,45(08):1342-1352.DOI:
10.13374/j.issn2095-9389.2022.06.10.002.
[21] 李孟浩, 袁三男. 改进 YOLOv5s 的交通标识检
测算法[J/OL]. 南京信息工程大学学报(自然科学
版 )(2023-05-30)[2023-07-13].DOI:10.13878/j.cnki.j
nuist.20230502002.
L I Meng-hao, YUAN San-nam. Improved traffic sign
detection algorithm for YOLOv5s[J/OL]. Journal of
Nanjing University of Information Engineering
(Natural Science Edition) (2023-05-30)
[2023-07-13].DOI:10.13878/j.cnki.jnuist.2023050200
2.
[22] 孙顺远,杨镇.基于改进 Faster RCNN 的目标检测算
法[J].计算机与数工程,2022,50(12):2654-2659.
S un Shunyuan,Yang Zhen. Target detection algorithm
based on improved Faster RCNN[J]. Computer and
Digital Engineering,2022,50(12):2654-2659.
[23] 陈德海,孙仕儒,王昱朝等.改进 SSD 算法的小目标
检 测 研 究 [J]. 传 感 器 与 微 系
统 ,2023,42(03):65-68+72.DOI:10.13873/J.1000-97 8
7(2023)03-0065-04.
C hen D. H., Sun S. R., Wang Y. Chao et al. Study on
small target detection with improved SSD
algorithm[J]. Sensors and
Microsystems,2023,42(03):65-68+72.DOI:10.13873/J.
1000-9787(2023)03-0065-04.
[24] 吴珊,周凤.基于改进 SSD 算法的小目标检测[J].
计算机工程,2023,49(7):179-188,195.
W u Shan, Zhou Feng . Small target detection based on
improved SSD algorithm [J]. Computer Engineering,
2023, 49(7):179-188, 195.
[25] 季娟娟,王佳,陈亚杰等.基于改进 YOLO v4 的热轧
带 钢 表 面 缺 陷 检 测 [J]. 计 算 机 工 程 与 设
计 ,2023,44(09):2786-2793.DOI:10.16208/j.issn1000
-7024.2023.09.030.
J I Juanjuan,WANG Jia,CHEN Yajie et al. Surface
defect detection of hot rolled strip steel based on
improved YOLO v4[J]. Computer Engineering and
Design,2023,44(09):2786-2793.DOI:10.16208/j.issn1
000-7024.2023.09.030.
|