1 |
齐鹏宇, 王洪元, 张继, 等. 基于改进FCOS的拥挤行人检测算法. 智能系统学报, 2021, 16 (4): 811- 818.
|
|
QI P Y , WANG H Y , ZHANG J , et al. Crowded pedestrian detection algorithm based on improved FCOS. Journal of Intelligent Systems, 2021, 16 (4): 811- 818.
|
2 |
罗艳, 张重阳, 田永鸿, 等. 深度学习行人检测方法综述. 中国图象图形学报, 2022, 27 (7): 2094- 2111.
|
|
LUO Y , ZHANG C Y , TIAN Y H , et al. An overview of deep learning based pedestrian detection algorithms. Journal of Image and Graphics, 2022, 27 (7): 2094- 2111.
|
3 |
陈宁, 李梦璐, 袁皓, 等. 遮挡情形下的行人检测方法综述. 计算机工程与应用, 2020, 56 (16): 13- 20.
|
|
CHEN N , LI M L , YUAN H , et al. Review of pedestrian detection with occlusion. Journal of Computer Engineering and Applications, 2020, 56 (16): 13- 20.
|
4 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2005: 886-893.
|
5 |
田仙仙, 鲍泓, 徐成. 一种改进HOG特征的行人检测算法. 计算机科学, 2014, 41 (9): 320- 324.
|
|
TIAN X X , BAO H , XU C . Improved HOG algorithm of pedestrian detection. Computer Science, 2014, 41 (9): 320- 324.
|
6 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
7 |
DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 472-488.
|
8 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2961-2969.
|
9 |
郑华伟, 王飞, 高建邦. DES-YOLO: 一种更精确的目标检测方法. 光电工程, 2024, 51 (11): 240212.
|
|
ZHENG H W , WANG F , GAO J B . DES-YOLO: a more accurate object detection method. Opto-Electronic Engineering, 2024, 51 (11): 240212.
|
10 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2081-2086.
|
11 |
|
12 |
邓杰, 万旺根. 基于改进YOLOv3的密集行人检测. 电子测量技术, 2021, 44 (11): 99- 95.
|
|
DENG J , WANG W G . Dense pedestrian detection based on improved YOLOv3. Electronic Measurement Technology, 2021, 44 (11): 99- 95.
|
13 |
TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[EB/OL]. [2023-11-08]. https://arXiv preprint arXiv: 2304.00501, 2023.
|
14 |
|
15 |
娄翔飞, 吕文涛, 叶冬, 等. 基于计算机视觉的行人检测方法研究进展. 浙江理工大学学报(自然科学), 2023, 49 (3): 318- 330.
|
|
LOU X F , LU W T , YE D , et al. Research progress on pedestrian detection methods based on computer vision. Journal of Zhejiang Sci-Tech University (Natural Science), 2023, 49 (3): 318- 330.
|
16 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
17 |
|
18 |
|
19 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
20 |
SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Germany: Springer, 2022: 443-459.
|
21 |
WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 3007-3016.
|
22 |
|
23 |
ZHANG S , XIE Y , WAN J , et al. WiderPerson: a diverse dataset for dense pedestrian detection in the wild. IEEE Transactions on Multimedia, 2020, 22 (2): 380- 393.
URL
|
24 |
YANG G, LEI J, ZHU Z, et al. AFPN: asymptotic feature pyramid network for object detection[C]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Washington D. C., USA: IEEE Press, 2023: 2184-2189.
|
25 |
LI J, WEN Y, HE L. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 6153-6162.
|
26 |
ZHU X Z, HU H, LIN S, et al. Deformable ConvNetsV2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 9308-9316.
|
27 |
HUANG H, ZHOU X, CAO J, et al. Vision Transformer with super token sampling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 22690-22699.
|
28 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1314-1324.
|
29 |
|
30 |
ZHOU D Q, HOU Q B, CHEN Y P, et al. Rethinking bottleneck structure for efficient mobile network design[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 680-697.
|
31 |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 764-773.
|
32 |
ZHANG X, SONG Y, SONG T, et al. AKConv: convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters[EB/OL]. [2023-11-08]. http://arXiv preprint arXiv: 2311.11587.
|