1 |
CHENG N , LV F , QUAN W , et al. Space/aerial-assisted computing offloading for IoT applications: a learning-based approach. IEEE Journal on Selected Areas in Communications, 2019, 37 (5): 1117- 1129.
doi: 10.1109/JSAC.2019.2906789
|
2 |
张维庭, 孙呈蕙, 王洪超, 等. 算网资源智能适配与融合调度方法. 电信科学, 2023, 39 (9): 12- 20.
|
|
ZHANG W T , SUN C H , WANG H C , et al. Intelligent adaptation and integrated scheduling method for computing and networking resources. Telecommunications Science, 2023, 39 (9): 12- 20.
|
3 |
ZHANG P Y , WANG C , KUMAR N , et al. Space-air-ground integrated multi-domain network resource orchestration based on virtual network architecture: a DRL method. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (3): 2798- 2808.
doi: 10.1109/TITS.2021.3099477
|
4 |
WANG C , LIU L , JIANG C X , et al. Incorporating distributed DRL into storage resource optimization of space-air-ground integrated wireless communication network. IEEE Journal of Selected Topics in Signal Processing, 2022, 16 (3): 434- 446.
doi: 10.1109/JSTSP.2021.3136027
|
5 |
ZHANG N , ZHANG S , YANG P , et al. Software defined space-air-ground integrated vehicular networks: challenges and solutions. IEEE Communications Magazine, 2017, 55 (7): 101- 109.
doi: 10.1109/MCOM.2017.1601156
|
6 |
HE J C , CHENG N , YIN Z S , et al. Service-oriented network resource orchestration in space-air-ground integrated network. IEEE Transactions on Vehicular Technology, 2024, 73 (1): 1162- 1174.
doi: 10.1109/TVT.2023.3301676
|
7 |
GUO H Z , LI J Y , LIU J J , et al. A survey on space-air-ground-sea integrated network security in 6G. IEEE Communications Surveys & Tutorials, 2022, 24 (1): 53- 87.
|
8 |
ZHANG P Y , CHEN N , SHEN S G , et al. AI-enabled space-air-ground integrated networks: management and optimization. IEEE Network, 2024, 38 (2): 186- 192.
doi: 10.1109/MNET.131.2200477
|
9 |
CAO B , ZHANG J T , LIU X , et al. Edge-cloud resource scheduling in space-air-ground-integrated networks for Internet of vehicles. IEEE Internet of Things Journal, 2022, 9 (8): 5765- 5772.
doi: 10.1109/JIOT.2021.3065583
|
10 |
曾锋, 张政, 陈志刚. 基于深度强化学习的计算卸载与资源分配策略. 通信学报, 2023, 44 (7): 124- 135.
|
|
ZENG F , ZHANG Z , CHEN Z G . Computation offloading and resource allocation strategy based on deep reinforcement learning. Journal on Communications, 2023, 44 (7): 124- 135.
|
11 |
CHEN M Z , CHALLITA U , SAAD W , et al. Artificial neural networks-based machine learning for wireless networks: a tutorial. IEEE Communications Surveys & Tutorials, 2019, 21 (4): 3039- 3071.
|
12 |
SUNDAR S , CHAMPATI J P , LIANG B . Multi-user task offloading to heterogeneous processors with communication delay and budget constraints. IEEE Transactions on Cloud Computing, 2022, 10 (3): 1958- 1974.
doi: 10.1109/TCC.2020.3019952
|
13 |
ZHANG W T , YANG D , ZHANG C , et al. (Com)2Net: a novel communication and computation integrated network architecture. IEEE Network, 2024, 38 (2): 35- 44.
doi: 10.1109/MNET.2024.3355922
|
14 |
TANG F X , HOFNER H , KATO N , et al. A deep reinforcement learning-based dynamic traffic offloading in Space-Air-Ground Integrated Networks (SAGIN). IEEE Journal on Selected Areas in Communications, 2022, 40 (1): 276- 289.
doi: 10.1109/JSAC.2021.3126073
|
15 |
XIE R C , TANG Q Q , WANG Q N , et al. Satellite-terrestrial integrated edge computing networks: architecture, challenges, and open issues. IEEE Network, 2020, 34 (3): 224- 231.
doi: 10.1109/MNET.011.1900369
|
16 |
SHANG B D , YI Y , LIU L J . Computing over space-air-ground integrated networks: challenges and opportunities. IEEE Network, 2021, 35 (4): 302- 309.
doi: 10.1109/MNET.011.2000567
|
17 |
张婷婷, 武楠, 姚海鹏. 天地融合网络智能组网体系架构研究. 天地一体化信息网络, 2022, 3 (3): 47- 55.
|
|
ZHANG T T , WU N , YAO H P . Research on intelligent networking architecture for the integrated space-terrestrial networks. Space-Integrated-Ground Information Networks, 2022, 3 (3): 47- 55.
|
18 |
李斌, 刘文帅, 费泽松. 面向空天地异构网络的边缘计算部分任务卸载策略. 电子与信息学报, 2022, 44 (9): 3091- 3098.
|
|
LI B , LIU W S , FEI Z S . Partial computation offloading for mobile edge computing in space-air-ground integrated network. Journal of Electronics & Information Technology, 2022, 44 (9): 3091- 3098.
|
19 |
PENG H X, SHEN X S. DDPG-based resource management for MEC/UAV-assisted vehicular networks[C]//Proceedings of the IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Washington D.C., USA: IEEE Press, 2020: 1-6.
|
20 |
CHENG M , ZHU C L , LIN M , et al. An O-MAPPO scheme for joint computation offloading and resources allocation in UAV assisted MEC systems. Computer Communications, 2023, 208, 190- 199.
doi: 10.1016/j.comcom.2023.06.008
|
21 |
XIAO Y, SONG Y Q, LIU J. Towards energy efficient resource allocation: when green mobile edge computing meets multi-agent deep reinforcement learning[C]//Proceedings of the IEEE International Conference on Communications. Washington D.C., USA: IEEE Press, 2022: 4056-4061.
|
22 |
JIANG Y Y , MAO Y X , WU G X , et al. A collaborative optimization strategy for computing offloading and resource allocation based on multi-agent deep reinforcement learning. Computers and Electrical Engineering, 2022, 103, 108278.
doi: 10.1016/j.compeleceng.2022.108278
|
23 |
|
24 |
|
25 |
SCHULMAN J, MORITZ P, LEVINE S, et al. High-dimensional continuous control using generalized advantage estimation[EB/OL]. [2024-02-11]. https://arxiv.org/abs/1506.02438v6.
|
26 |
KANG H Y , CHANG X L , MIŠIĆ J , et al. Cooperative UAV resource allocation and task offloading in hierarchical aerial computing systems: a MAPPO-based approach. IEEE Internet of Things Journal, 2023, 10 (12): 10497- 10509.
doi: 10.1109/JIOT.2023.3240173
|