1 |
PÉREZ-GUERRERO C , CIPRIÁN-SÁNCHEZ J F , PALACIOS A , et al. Computer vision-based characterization of large-scale jet flames using a synthetic infrared image generation approach. Engineering Applications of Artificial Intelligence, 2024, 127, 107275.
doi: 10.1016/j.engappai.2023.107275
|
2 |
EYIOKUR F I , KANTARCI A , ERAKıN M E , et al. A survey on computer vision based human analysis in the COVID-19 era. Image and Vision Computing, 2023, 130, 104610.
doi: 10.1016/j.imavis.2022.104610
|
3 |
KHURANA D , KOLI A , KHATTER K , et al. Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 2023, 82 (3): 3713- 3744.
doi: 10.1007/s11042-022-13428-4
|
4 |
LIAO J W , ESKIMEZ S , LU L Y , et al. Improving readability for automatic speech recognition transcription. ACM Transactions on Asian and Low-Resource Language Information Processing, 2023, 22 (5): 1- 23.
|
5 |
|
6 |
王军, 冯孙铖, 程勇. 深度学习的轻量化神经网络结构研究综述. 计算机工程, 2021, 47 (8): 1- 13.
URL
|
|
WANG J , FENG S C , CHENG Y . Survey of research on lightweight neural network structures for deep learning. Computer Engineering, 2021, 47 (8): 1- 13.
URL
|
7 |
OGBOGU C O , ARKA A I , PFROMM L , et al. Accelerating graph neural network training on ReRAM-based PIM architectures via graph and model pruning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42 (8): 2703- 2716.
doi: 10.1109/TCAD.2022.3227879
|
8 |
STEWART J, MICHIELI U, OZAY M. Data-free model pruning at initialization via expanders[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2023: 4518-4523.
|
9 |
郭奕裕, 周箩鱼. 安全帽佩戴检测网络模型的轻量化设计. 计算机工程, 2023, 49 (4): 312- 320.
URL
|
|
GUO Y Y , ZHOU L Y . Lightweight design of safety helmet wearing detection network model. Computer Engineering, 2023, 49 (4): 312- 320.
URL
|
10 |
GOU J P , XIONG X S , YU B S , et al. Multi-target knowledge distillation via student self-reflection. International Journal of Computer Vision, 2023, 131 (7): 1857- 1874.
doi: 10.1007/s11263-023-01792-z
|
11 |
曹坪, 杨怀志, 薄一军, 等. 面向低质量裂缝图像的多知识蒸馏分类. 计算机工程, 2023, 49 (7): 204- 213.
URL
|
|
CAO P , YANG H Z , BO Y J , et al. Low-quality crack image classification with multi-knowledge distillation. Computer Engineering, 2023, 49 (7): 204- 213.
URL
|
12 |
ZOU H , ZHANG C , LASAULCE S , et al. Goal-oriented quantization: analysis, design, and application to resource allocation. IEEE Journal on Selected Areas in Communications, 2022, 41 (1): 42- 54.
|
13 |
XU N J , CHEN X H , CAO Y L , et al. Hybrid post-training quantization for super-resolution neural network compression. IEEE Signal Processing Letters, 2023, 30, 379- 383.
|
14 |
巩杰, 赵烁, 何虎, 等. 基于FPGA的量化CNN加速系统设计. 计算机工程, 2022, 48 (3): 170-174, 196.
URL
|
|
GONG J , ZHAO S , HE H , et al. Design of quantized CNN acceleration system based on FPGA. Computer Engineering, 2022, 48 (3): 170-174, 196.
URL
|
15 |
CHEN T Q, MOREAU T, JIANG Z H, et al. TVM[C]//Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation. New York, USA: ACM Press, 2018: 579-594.
|
16 |
LI M Z , LIU Y , LIU X Y , et al. The deep learning compiler: a comprehensive survey. IEEE Transactions on Parallel and Distributed Systems, 2020, 32 (3): 708- 727.
|
17 |
|
18 |
ROESCH J, LYUBOMIRSKY S, WEBER L, et al. Relay: a new IR for machine learning frameworks[C]//Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. New York, USA: ACM Press, 2018: 58-68.
|
19 |
|
20 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
|
21 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 770-778.
|
22 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 2818-2826.
|
23 |
|
24 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
25 |
|