| 1 | HOSSEINI M J, HAJISHIRZI H, ETZIONI O, et al. Learning to solve arithmetic word problems with verb categorization[C]∥Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 523-533. | 
																													
																							| 2 | LIGUDA C, PFEIFFER T. Modeling math word problems with augmented semantic networks[C]∥Proceedings of International Conference on Application of Natural Language to Information Systems. Berlin, Germany: Springer, 2012: 247-252. | 
																													
																							| 3 | SUNDARAM S S, KHEMANI D. Natural language processing for solving simple word problems[C]∥Proceedings of the 12th International Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 394-402. | 
																													
																							| 4 | KONCEL-KEDZIORSKI R, HAJISHIRZI H, SABHARWAL A, et al. Parsing algebraic word problems into equations. Transactions of the Association for Computational Linguistics, 2015, 3, 585- 597.  doi: 10.1162/tacl_a_00160
 | 
																													
																							| 5 | HU R H, ANDREAS J, ROHRBACH M, et al. Learning to reason: end-to-end module networks for visual question answering[C]∥Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 804-813. | 
																													
																							| 6 | CHIANG T R, CHEN Y N. Semantically-aligned equation generation for solving and reasoning math word problems[C]∥Proceedings of the 2019 Conference of the North. Stroudsburg, USA: Association for Computational Linguistics, 2019: 2656-2668. | 
																													
																							| 7 | HUANG S F, WANG J W, XU J, et al. Recall and learn: a memory-augmented solver for math word problems[EB/OL]. [2024-02-14]. http://arxiv.org/abs/2109.13112 . | 
																													
																							| 8 | LIANG Z W, ZHANG J P, ZHANG X L. Analogical math word problems solving with enhanced problem-solution association[C]∥Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2022: 9454-9464. | 
																													
																							| 9 | KUSHMAN N, ARTZI Y, ZETTLEMOYER L, et al. Learning to automatically solve algebra word problems[C]∥Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2014: 271-281. | 
																													
																							| 10 | ROY S, ROTH D. Solving general arithmetic word problems[C]∥Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1743-1752. | 
																													
																							| 11 | WANG Y, LIU X J, SHI S M. Deep neural solver for math word problems[C]∥Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 845-854. | 
																													
																							| 12 | LIANG Z W, ZHANG J P, WANG L, et al. MWP-BERT: numeracy-augmented pre-training for math word problem solving[EB/OL]. [2024-02-14]. http://arxiv.org/abs/2107.13435 . | 
																													
																							| 13 | RIBEIRO N. Reasoning and structured explanations in natural language via analogical and neural learning[D]. Chicago, USA: Northwestern University, 2023. | 
																													
																							| 14 | GOLDBERG Y, LEVY O. word2vec Explained: deriving Mikolov et al. 's negative-sampling word-embedding method[EB/OL]. [2024-02-14]. http://arxiv.org/abs/1402.3722 . | 
																													
																							| 15 |  | 
																													
																							| 16 | JIE Z M, LI J R, LU W. Learning to reason deductively: math word problem solving as complex relation extraction[C]∥Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 5944-5955. | 
																													
																							| 17 | WANG Y, LIU X J, SHI S M. Deep neural solver for math word problems[C]∥Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 845-854. | 
																													
																							| 18 | XIE Z P, SUN S C. A goal-driven tree-structured neural model for math word problems[C]∥Proceedings of the 28th International Joint Conference on Artificial Intelligence. Stroudsburg, USA: Association for Computational Linguistics, 2019: 5299-5305. | 
																													
																							| 19 | LIANG Z W, ZHANG X L. Solving math word problems with teacher supervision[C]∥Proceedings of the 30th International Joint Conference on Artificial Intelligence. Stroudsburg, USA: Association for Computational Linguistics, 2021: 3522-3528. | 
																													
																							| 20 | ZHANG J P, WANG L, LEE R K W, et al. Graph-to-tree learning for solving math word problems[C]∥Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 3928-3937. | 
																													
																							| 21 | 肖菁, 何岱俊, 曹阳. 一种自动求解数学应用题的双路文本编码器. 华南师范大学学报(自然科学版), 2023, 55(1): 36- 44.  URL
 | 
																													
																							|  | XIAO J, HE D J, CAO Y. A dual channel text encoder for solving math word problems. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 36- 44.  URL
 | 
																													
																							| 22 | 黄林嘉, 肖菁, 曹阳. 一种求解数学应用题的多粒度图神经网络编码器. 中文信息学报, 2023, 37(2): 148- 157.  URL
 | 
																													
																							|  | HUANG L J, XIAO J, CAO Y. Solving math word problems by multi-grained graph neural networks. Journal of Chinese Information Processing, 2023, 37(2): 148- 157.  URL
 | 
																													
																							| 23 | SHEN J H, YIN Y C, LI L, et al. Generate & Rank: a multi-task framework for math word problems[C]∥Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 2269-2279. | 
																													
																							| 24 | LI Z L, ZHANG W X, YAN C, et al. Seeking patterns, not just memorizing procedures: contrastive learning for solving math word problems[C]∥Proceedings of the Findings of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 2486-2496. | 
																													
																							| 25 | JIE Z M, LI J R, LU W. Learning to reason deductively: math word problem solving as complex relation extraction[EB/OL]. [2024-02-14]. http://arxiv.org/abs/2203.10316 . | 
																													
																							| 26 | LIU Q Y, GUAN W, LI S J, et al. Tree-structured decoding for solving math word problems[C]∥Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 2370-2379. |