[1] MARTIN R C, FEATHERS M C. Clean code:a handbook of agile software craftsmanship[M]. Upper Saddle River, USA:Prentice Hall International, Inc., 2009. [2] BUTLER S, WERMELINGER M, YU Y J, et al. Exploring the influence of identifier names on code quality:an empirical study[C]//Proceedings of the 14th European Conference on Software Maintenance and Reengineering. Washington D.C., USA:IEEE Press, 2010:156-165. [3] 高原,刘辉,樊孝忠,等.基于代码库和特征匹配的函数名称推荐方法[J].软件学报, 2015, 26(12):3062-3074. GAO Y, LIU H, FAN X Z, et al. Method name recommendation based on source code depository and feature matching[J]. Journal of Software, 2015, 26(12):3062-3074.(in Chinese) [4] KUHN A, DUCASSE S, GÍRBA T. Semantic clustering:identifying topics in source code[J]. Information and Software Technology, 2007, 49(3):230-243. [5] WEI B L. Retrieve and refine:exemplar-based neural comment generation[C]//Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). Washington D.C., USA:IEEE Press, 2019:349-360. [6] EDDY B P, ROBINSON J A, KRAFT N A, et al. Evaluating source code summarization techniques:replication and expansion[C]//Proceedings of the 21st International Conference on Program Comprehension (ICPC). Washington D.C., USA:IEEE Press, 2013:13-22. [7] GUO D Y, LU S, DUAN N, et al. UniXcoder:unified cross-modal pre-training for code representation[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). Stroudsburg, USA:Association for Computational Linguistics, 2022:7212-7225. [8] YANG G, LIU K, CHEN X, et al. CCGIR:information retrieval-based code comment generation method for smart contracts[J]. Knowledge-Based Systems, 2022, 237:107858. [9] ROY C K, CORDY J R, KOSCHKE R. Comparison and evaluation of code clone detection techniques and tools:a qualitative approach[J]. Science of Computer Programming, 2009, 74(7):470-495. [10] WHITE M, TUFANO M, VENDOME C, et al. Deep learning code fragments for code clone detection[C]//Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. New York, USA:ACM Press, 2016:87-98. [11] 张应成,杨洋,蒋瑞,等.基于BiLSTM-CRF的商情实体识别模型[J].计算机工程, 2019, 45(5):308-314. ZHANG Y C, YANG Y, JIANG R, et al. Commercial intelligence entity recognition model based on BiLSTM-CRF[J]. Computer Engineering, 2019, 45(5):308-314.(in Chinese) [12] KIM S, KIM D. Automatic identifier inconsistency detection using code dictionary[J]. Empirical Software Engineering, 2016, 21(2):565-604. [13] HAIDUC S, APONTE J, MARCUS A. Supporting program comprehension with source code summarization[C]//Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering. New York, USA:ACM Press, 2010:223-226. [14] ALLAMANIS M, PENG H, SUTTON C. A convolutional attention network for extreme summarization of source code[EB/OL].[2023-06-11]. https://arxiv.org/abs/1602.03001. [15] 周锦峰,叶施仁,王晖.基于深度卷积神经网络模型的文本情感分类[J].计算机工程, 2019, 45(3):300-308. ZHOU J F, YE S R, WANG H. Text sentiment classification based on deep convolutional neural network model[J]. Computer Engineering, 2019, 45(3):300-308.(in Chinese) [16] ALON U, ZILBERSTEIN M, LEVY O, et al. A general path-based representation for predicting program properties[J]. ACM SIGPLAN Notices, 2018, 53(4):404-419. [17] ALON U, ZILBERSTEIN M, LEVY O, et al. Code2Vec:learning distributed representations of code[J]. Proceedings of the ACM on Programming Languages, 2018, 3:40. [18] ALON U, BRODY S, LEVY O, et al. Code2Seq:generating sequences from structured representations of code[EB/OL].[2023-06-11]. https://arxiv.org/abs/1808.01400. [19] ZHANG C T, WANG J, ZHANG R. Using a Euclid distance discriminant method to find protein coding genes in the yeast genome[J]. Computers&Chemistry, 2002, 26(3):195-206. [20] NIWATTANAKUL S, SINGTHONGCHAI J, NAENUDORN E, et al. Using of Jaccard coefficient for keywords similarity[EB/OL].[2023-06-11]. http://www.researchgate.net/publication/317248581_Using_of_Jaccard_Coefficient_for_Keywords_Similarity?ev=prf_high. [21] WHALE G. Plague:plagiarism detection using program structure[D]. Sydney, Australia:University of NSW, 1988. [22] FENG Z Y, GUO D Y, TANG D Y, et al. CodeBERT:a pre-trained model for programming and natural languages[C]//Proceedings of the Findings of the Association for Computational Linguistics:EMNLP 2020. Stroudsburg, USA:Association for Computational Linguistics, 2020:1536-1547. [23] JOHNSON J, DOUZE M, JEGOU H. Billion-scale similarity search with GPUs[J]. IEEE Transactions on Big Data, 2021, 7(3):535-547. [24] YANG G, CHEN X, CAO J X, et al. ComFormer:code comment generation via transformer and fusion method-based hybrid code representation[C]//Proceedings of the 8th International Conference on Dependable Systems and Their Applications (DSA). Washington D.C., USA:IEEE Press, 2021:30-41. [25] HU X, LI G, XIA X, et al. Deep code comment generation[C]//Proceedings of the 26th Conference on Program Comprehension. New York, USA:ACM Press, 2018:200-210. [26] BILLE P. A survey on tree edit distance and related problems[J]. Theoretical Computer Science, 2005, 337(1/2/3):217-239. [27] KONDO M, OLIVA G A, JIANG Z M, et al. Code cloning in smart contracts:a case study on verified contracts from the Ethereum blockchain platform[J]. Empirical Software Engineering, 2020, 25(6):4617-4675. [28] KENTON J D M W C, TOUTANOVA L K. BERT:pre-training of deep bidirectional Transformers for language understanding[C]//Proceedings of NAACL-HLT'19. New York, USA:ACM Press, 2019:4171-4186. |