1 |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 11-18.
|
2 |
CHIU C C, SAINATH T N, WU Y H, et al. State-of-the-art speech recognition with sequence-to-sequence models[C]// Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2018: 45-51.
|
3 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of Conference on the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, USA: Association for Computational Linguistics, 2019: 3498-4195.
|
4 |
王霞. 协同过滤在电子商务推荐系统中的应用研究[D]. 西安: 西北大学, 2003.
|
|
WANG X. Research on the application of collaborative filtering in e-commerce recommendation systems[D]. Xi'an: Northwest University, 2003. (in Chinese)
|
5 |
KUNEGIS J, SCHMIDT S. Collaborative filtering using electrical resistance network models[C]//Proceedings of the 7th Industrial Conference on Advances in Data Mining. Berlin, Germany: Springer, 2007: 269-282.
|
6 |
COOPER C, LEE S H, RADZIK T, et al. Random walks in recommender systems: exact computation and simulations[C]//Proceedings of the 23rd International Conference on World Wide Web. New York, USA: ACM Press, 2014: 811-816.
|
7 |
罗辛, 欧阳元新, 熊璋, 等. 通过相似度支持度优化基于K近邻的协同过滤算法. 计算机学报, 2010, 33 (8): 1437- 1445.
doi: 10.3724/SP.J.1016.2010.01437
|
|
LUO X , OU YANG Y X , XIONG Z , et al. The effect of similarity support in K-nearest-neighborhoog based collaborative filtering. Chinese Journal of Computers, 2010, 33 (8): 1437- 1445.
doi: 10.3724/SP.J.1016.2010.01437
|
8 |
PENG J, ZENG D J, ZHAO H M, et al. Collaborative filtering in social tagging systems based on joint item-tag recommendations[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2010: 809-818.
|
9 |
CLAYPOOL M, GOKHALE A, MIRANDA T, et al. Combining content-based and collaborative filters in online newspaper[C]//Proceedings of ACM SIGIR Workshop on Recommender Systems. New York, USA: ACM Press, 1999: 40-48.
|
10 |
PAZZANI M J . A framework for collaborative, contentbased and demographic filtering. Artificial Intelligence Review, 1999, 13 (5/6): 393- 408.
|
11 |
GEORGANAS E, AVANCHA S, BANERJEE K, et al. Anatomy of high-performance deep learning convolutions on SIMD architectures[C]//Proceedings of the SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. Washington D. C., USA: IEEE Press, 2018: 830-841.
|
12 |
李创, 刘宗林, 刘胜, 等. 快速卷积算法的综述研究. 计算机工程与科学, 2021, 43 (10): 1711- 1719.
doi: 10.3969/j.issn.1007-130X.2021.10.001
|
|
LI C , LIU Z L , LIU S , et al. A survey of fast convolution algorithms. Computer Engineering and Science, 2021, 43 (10): 1711- 1719.
doi: 10.3969/j.issn.1007-130X.2021.10.001
|
13 |
JEH G, VWIDOM J. SimRank: a measure of structuralcontext similarity[C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2002: 538-543.
|
14 |
|
15 |
CHO M, BRAND D. MEC: memory-efficient convolution for deep neural network[C]//Proceedings of the 34th International Conference on Machine Learning. New York, USA: ACM Press, 2017: 815-824.
|
16 |
王朝闻, 蒋林, 李远成, 等. 基于TVM平台的MEC卷积算法优化. 计算机工程与应用, 2023, 59 (1): 180- 186.
doi: 10.3778/j.issn.1002-8331.2106-0502
|
|
WANG Z W , JIANG L , LI Y C , et al. Optimization of MEC convolution algorithm based on TVM platform. Computer Engineering and Application, 2023, 59 (1): 180- 186.
doi: 10.3778/j.issn.1002-8331.2106-0502
|
17 |
李叶, 毛伊敏, 陈志刚. 基于Winograd卷积的并行深度卷积神经网络优化算法. 信息与控制, 2023, 52 (4): 466- 482.
doi: 10.13976/j.cnki.xk.2023.2270
|
|
LI Y , MAO Y M , CHEN Z G . Winograd-based parallel deep convolutional neural network optimization algorithm. Information and Control, 2023, 52 (4): 466- 482.
doi: 10.13976/j.cnki.xk.2023.2270
|
18 |
KOLDA T G, SUN J M. Scalable Tensor decompositions for multi-aspect data mining[C]// Proceedings of the 8th IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2008: 363-372.
|
19 |
苗瑞霞, 张雪兰, 谭星浩, 等. 基于RISC-V的神经网络卷积算法的研究与优化. 计算机工程与设计, 2022, 43 (3): 668- 676.
doi: 10.16208/j.issn1000-7024.2022.03.010
|
|
MIAO R X , ZHANG X L , TAN X H , et al. Research and optimization of neural network convolution algorithm for RISC-V. Computer Engineering and Design, 2022, 43 (3): 668- 676.
doi: 10.16208/j.issn1000-7024.2022.03.010
|
20 |
李叶. 基于MapReduce的并行深度卷积神经网络优化算法的研究[D]. 赣州: 江西理工大学, 2022.
|
|
LI Y. Distributed deep convolution neural network optimization algorithm based on MapReduce[D]. Ganzhou: Jiangxi University of Science and Technology, 2022. (in Chinese)
|
21 |
李茂文, 曲国远, 魏大洲, 等. 面向GPU计算平台的神经网络卷积性能优化. 计算机研究与发展, 2022, 59 (6): 1181- 1191.
doi: 10.7544/issn1000-1239.20200985
|
|
LI M W , QU G Y , WEI D Z , et al. Performance optimization of neural network convolution based on GPU platform. Journal of Computer Research and Development, 2022, 59 (6): 1181- 1191.
doi: 10.7544/issn1000-1239.20200985
|
22 |
方玉玲, 陈庆奎. 基于矩阵转换的卷积计算优化方法. 计算机工程, 2019, 45 (7): 217-221, 228.
doi: 10.19678/j.issn.1000-3428.0051507
|
|
FANG Y L , CHEN Q K . Convolution calculation optimization method based on matrix transformation. Computer Engineering, 2019, 45 (7): 217-221, 228.
doi: 10.19678/j.issn.1000-3428.0051507
|
23 |
武铮, 安虹, 金旭, 等. 基于Intel平台的Winograd快速卷积算法研究与优化. 计算机研究与发展, 2019, 56 (4): 825- 835.
doi: 10.7544/issn1000-1239.2019.20170932
|
|
WU Z , AN H , JIN X , et al. Research and optimization of fast convolution algorithm Winograd on Intel platform. Journal of Computer Research and Development, 2019, 56 (4): 825- 835.
doi: 10.7544/issn1000-1239.2019.20170932
|
24 |
LIU Y Z, WANG Y, YU R F, et al. Optimizing CNN model inference on CPUs[C]//Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference. New York, USA: ACM Press, 2019: 1025-1040.
|
25 |
苗鑫, 周欢欢, 陆栋洵. 基于ZCU102 DSP的CNN卷积运算加速方法. 自动化技术与应用, 2022, 41 (12): 64- 67.
doi: 10.20033/j.1003-7241.(2022)12-0064-04
|
|
MIAO X , ZHOU H H , LU D X . Acceleration method for CNN convolution based on ZCU102 DSP. Techniques of Automation and Applications, 2022, 41 (12): 64- 67.
doi: 10.20033/j.1003-7241.(2022)12-0064-04
|
26 |
MELVILLE P, MOONEY R J, NAGARAJAN R. Content-boosted collaborative filtering for improved recommendations[C]//Proceedings of the 8th National Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2002: 187-192.
|