| 1 |
LOH G H, SWAMINATHAN R. The next era for chiplet innovation[C]//Proceedings of the 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). Washington D.C., USA: IEEE Press, 2023: 1-6.
|
| 2 |
刘宏, 刘冬雨, 蒋再男. 空间机械臂技术综述及展望. 航空学报, 2021, 42 (1): 524164.
|
|
LIU H , LIU D Y , JIANG Z N . Space manipulator technology: review and prospect. Acta Aeronautica et Astronautica Sinica, 2021, 42 (1): 524164.
|
| 3 |
BOHREN J, RUSU R B, GIL J E, et al. Towards autonomous robotic butlers: lessons learned with the PR2[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2011: 5568-5575.
|
| 4 |
BONARINI A , MATTEUCCI M , MIGLIAVACCA M , et al. R2P: an open source hardware and software modular approach to robot prototyping. Robotics and Autonomous Systems, 2014, 62 (7): 1073- 1084.
doi: 10.1016/j.robot.2013.08.009
|
| 5 |
ARAI T , PAGELLO E , PARKER L E . Guest editorial advances in multirobot systems. IEEE Transactions on Robotics and Automation, 2002, 18 (5): 655- 661.
doi: 10.1109/TRA.2002.806024
|
| 6 |
刘冰, 张岩. 基于多点触摸的协作机器人近似最优人机交互控制算法. 吉林大学学报(理学版), 2024, 62 (5): 1211- 1218.
|
|
LIU B , ZHANG Y . Approximate optimal human-computer interaction control algorithm for collaborative robots based on multi-point touch. Journal of Jilin University (Science Edition), 2024, 62 (5): 1211- 1218.
|
| 7 |
AN X , WU C , LIN Y F , et al. Multi-robot systems and cooperative object transport: communications, platforms, and challenges. IEEE Open Journal of the Computer Society, 2023, 4, 23- 36.
doi: 10.1109/OJCS.2023.3238324
|
| 8 |
COUSINS S . ROS on the PR2[ROS topics]. IEEE Robotics & Automation Magazine, 2010, 17 (3): 23- 25.
|
| 9 |
MACENSKI S , FOOTE T , GERKEY B , et al. Robot Operating System 2:design, architecture, and uses in the wild. Science Robotics, 2022, 7 (66): 6074.
doi: 10.1126/scirobotics.abm6074
|
| 10 |
MARUYAMA Y, KATO S, AZUMI T. Exploring the performance of ROS 2[C]//Proceedings of the 13th International Conference on Embedded Software. New York, USA: ACM Press, 2016: 1-10.
|
| 11 |
BRUYNINCKX H. Open robot control software: the OROCOS project[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2001: 2523-2528.
|
| 12 |
BARUT S, BONEBERGER M, MOHAMMADI P, et al. Benchmarking real-time capabilities of ROS 2 and OROCOS for robotics applications[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2021: 708-714.
|
| 13 |
KRAMER J , SCHEUTZ M . Development environments for autonomous mobile robots: a survey. Autonomous Robots, 2007, 22 (2): 101- 132.
doi: 10.1007/s10514-006-9013-8
|
| 14 |
IÑIGO-BLASCO P , DIAZ-DEL-RIO F , ROMERO-TERNERO M C , et al. Robotics software frameworks for multi-agent robotic systems development. Robotics and Autonomous Systems, 2012, 60 (6): 803- 821.
doi: 10.1016/j.robot.2012.02.004
|
| 15 |
ELKADY A , SOBH T . Robotics middleware: a comprehensive literature survey and attribute-based bibliography. Journal of Robotics, 2012 (1): 959013.
|
| 16 |
TIEMERDING T , FATIKOW S . Software for small-scale robotics: a review. International Journal of Automation and Computing, 2018, 15 (5): 515- 524.
doi: 10.1007/s11633-018-1130-2
|
| 17 |
DAWARKA V , BEKAROO G . Building and evaluating cloud robotic systems: a systematic review. Robotics and Computer-Integrated Manufacturing, 2022, 73, 102240.
doi: 10.1016/j.rcim.2021.102240
|
| 18 |
DORIGO M , FLOREANO D , GAMBARDELLA L M , et al. Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 2013, 20 (4): 60- 71.
|
| 19 |
汪李峰, 杨学军. 战术场景互联网——未来智能化战场的神经系统. 指挥与控制学报, 2021, 7 (4): 359- 364.
|
|
WANG L F , YANG X J . Tactical scenario Internet: a nervous system of future intelligent battlefield. Journal of Command and Control, 2021, 7 (4): 359- 364.
|
| 20 |
TOWNSEND J, BIESIADECKI J, COLLINS C. ATHLETE mobility performance with active terrain compliance[C]//Proceedings of the IEEE Aerospace Conference. Washington D.C., USA: IEEE Press, 2010: 1-7.
|
| 21 |
ZHU K J , QUAN Q Q , TANG D W , et al. A Mars quadcopter capable of autonomous flight and sample collection: structure and avionics. Acta Astronautica, 2024, 214, 712- 721.
doi: 10.1016/j.actaastro.2023.11.034
|
| 22 |
EL NAKIB S , JAWHAR I , SINDIAN S , et al. Networking of multi-robot systems: issues and requirements. International Journal of Sensor Networks, 2023, 43 (2): 88- 98.
doi: 10.1504/IJSNET.2023.134307
|
| 23 |
LÜ Z H , CHENG C , LÜ H B . Multi-robot distributed communication in heterogeneous robotic systems on 5G networking. IEEE Wireless Communications, 2023, 30 (2): 98- 104.
doi: 10.1109/MWC.001.2200315
|
| 24 |
JAWHAR I , MOHAMED N , WU J , et al. Networking of multi-robot systems: architectures and requirements. Journal of Sensor and Actuator Networks, 2018, 7 (4): 52.
doi: 10.3390/jsan7040052
|
| 25 |
SANFELIU A , HAGITA N , SAFFIOTTI A . Network robot systems. Robotics and Autonomous Systems, 2008, 56 (10): 793- 797.
doi: 10.1016/j.robot.2008.06.007
|
| 26 |
陈健瑞, 王景璟, 侯向往, 等. 挺进深蓝: 从单体仿生到群体智能. 电子学报, 2021, 49 (12): 2458- 2467.
|
|
CHEN J R , WANG J J , HOU X W , et al. Advance into ocean: from bionic monomer to swarm intelligence. Acta Electronica Sinica, 2021, 49 (12): 2458- 2467.
|
| 27 |
VAUGHAN R T, GERKEY B P, HOWARD A. On device abstractions for portable, reusable robot code[C]//Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2003: 2421-2427.
|
| 28 |
MAGNENAT S , RÉTORNAZ P , BONANI M , et al. ASEBA: a modular architecture for event-based control of complex robots. ASME Transactions on Mechatronics, 2011, 16 (2): 321- 329.
doi: 10.1109/TMECH.2010.2042722
|
| 29 |
HONG S, LEE J, EOM H, et al. The Robot Software Communications Architecture (RSCA): embedded middleware for networked service robots[C]//Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium. Washington D.C., USA: IEEE Press, 2006: 1-8.
|
| 30 |
EINHORN E, LANGNER T, STRICKER R, et al. MIRA-middleware for robotic applications[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2012: 2591-2598.
|
| 31 |
KIM J, YOON H, KIM S, et al. Fault management of robot software components based on OPRoS[C]//Proceedings of the 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing. Washington D.C., USA: IEEE Press, 2011: 253-260.
|
| 32 |
CALISI D, CENSI A, IOCCHI L, et al. OpenRDK: a modular framework for robotic software development[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2008: 1872-1877.
|
| 33 |
UTZ H , SABLATNOG S , ENDERLE S , et al. Miro-middleware for mobile robot applications. IEEE Transactions on Robotics and Automation, 2002, 18 (4): 493- 497.
doi: 10.1109/TRA.2002.802930
|
| 34 |
ANDO N , SUEHIRO T , KOTOKU T . A software platform for component based RT-system development: OpenRTM-aist. Berlin, Germany: Springer, 2008.
|
| 35 |
MALLET A, PASTEUR C, HERRB M, et al. GenoM3: building middleware-independent robotic components[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2010: 4627-4632.
|
| 36 |
|
| 37 |
VELOSO M V D , FILHO J T C , BARRETO G A . SOM4R: a middleware for robotic applications based on the resource-oriented architecture. Journal of Intelligent & Robotic Systems, 2017, 87 (3): 487- 506.
|
| 38 |
YANG X J , DAI H D , YI X D , et al. micROS: a morphable, intelligent and collective robot operating system. Robotics and Biomimetics, 2016, 3 (1): 21.
doi: 10.1186/s40638-016-0054-y
|
| 39 |
WU Y L, LI J H, DAI H D, et al. micROS. BT: an event-driven behavior tree framework for swarm robots[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2021: 9146-9153.
|
| 40 |
戴华东, 易晓东, 王彦臻, 等. 可持续自主学习的micROS机器人操作系统平行学习架构. 计算机研究与发展, 2019, 56 (1): 49- 57.
|
|
DAI H D , YI X D , WANG Y Z , et al. Parallel learning architecture of micROS powering the ability of life-long autonomous learning. Journal of Computer Research and Development, 2019, 56 (1): 49- 57.
|
| 41 |
刘海波, 顾国昌, 张国印. 智能机器人体系结构分类研究. 哈尔滨工程大学学报, 2003, 24 (6): 664- 668.
|
|
LIU H B , GU G C , ZHANG G Y . Research on classification of intelligent robot architectures. Journal of Harbin Engineering University, 2003, 24 (6): 664- 668.
|
| 42 |
ZHOU X , WEN X Y , WANG Z P , et al. Swarm of micro flying robots in the wild. Science Robotics, 2022, 7 (66): 1- 17.
|
| 43 |
|
| 44 |
AHN H, AHN S C, HEO J, et al. Fault tolerant framework and techniques for component-based autonomous robot systems[C]//Proceedings of the 2011 ACM Symposium on Applied Computing. New York, USA: ACM Press, 2011: 566-572.
|
| 45 |
CUI Y Z , VOYLES R M , LANE J T , et al. A mechanism for real-time decision making and system maintenance for resource constrained robotic systems through ReFrESH. Autonomous Robots, 2015, 39 (4): 487- 502.
doi: 10.1007/s10514-015-9472-x
|
| 46 |
CHEN J L , CAO J N , LIANG Z X , et al. GraphWare: a graph-based middleware enabling multi-robot cooperation. Concurrency and Computation: Practice and Experience, 2022, 34 (17): 1- 20.
|
| 47 |
CORRADINI F , PETTINARI S , RE B , et al. A BPMN-driven framework for multi-robot system development. Robotics and Autonomous Systems, 2023, 160, 104322.
doi: 10.1016/j.robot.2022.104322
|
| 48 |
CUCINOTTA T , AMORY A , ARA G , et al. Multi-criteria optimization of real-time DAGs on heterogeneous platforms under P-EDF. ACM Transactions on Embedded Computing Systems, 2024, 23 (1): 1- 35.
|
| 49 |
POHLMANN J, MATTHÉ M, KRONAUER T, et al. ROS2-based small-scale development platform for CCAM research demonstrators[C]//Proceedings of the IEEE 95th Vehicular Technology Conference. Washington D.C., USA: IEEE Press, 2022: 1-6.
|
| 50 |
JIANG S, CAO J N, LIU Y, et al. Programming large-scale multi-robot system with timing constraints[C]//Proceedings of the 25th International Conference on Computer Communication and Networks (ICCCN). Washington D.C., USA: IEEE Press, 2016: 1-9.
|
| 51 |
BALCH T , ARKIN R C . Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 1998, 14 (6): 926- 939.
doi: 10.1109/70.736776
|
| 52 |
WOOLLEY B G , PETERSON G L . Unified behavior framework for reactive robot control. Journal of Intelligent and Robotic Systems, 2009, 55 (2): 155- 176.
|
| 53 |
ARKIN R C . Motor Schema-based mobile robot navigation. The International Journal of Robotics Research, 1989, 8 (4): 92- 112.
doi: 10.1177/027836498900800406
|
| 54 |
STEWART D B , VOLPE R A , KHOSLA P K . Design of dynamically reconfigurable real-time software using port-based objects. IEEE Transactions on Software Engineering, 1997, 23 (12): 759- 776.
doi: 10.1109/32.637390
|
| 55 |
FOK C L , ROMAN G C , LU C Y . Servilla: a flexible service provisioning middleware for heterogeneous sensor networks. Science of Computer Programming, 2012, 77 (6): 663- 684.
doi: 10.1016/j.scico.2010.11.006
|
| 56 |
陈游旻, 陆游游, 罗圣美, 等. 基于RDMA的分布式存储系统研究综述. 计算机研究与发展, 2019, 56 (2): 227- 239.
|
|
CHEN Y M , LU Y Y , LUO S M , et al. Survey on RDMA-based distributed storage systems. Journal of Computer Research and Development, 2019, 56 (2): 227- 239.
|
| 57 |
SHIH T C , YEH S S , HSU P L . Development of a behavior-based cooperative search strategy for distributed autonomous mobile robots using ZigBee wireless sensor network. Asian Journal of Control, 2014, 16 (2): 421- 430.
doi: 10.1002/asjc.652
|
| 58 |
HUANG A S, OLSON E, MOORE D C. LCM: lightweight communications and marshalling[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2010: 4057-4062.
|
| 59 |
JASPER M, KÖPSELL S. Secure and dynamic publish/subscribe: LCMsec[C]//Proceedings of the IEEE 98th Vehicular Technology Conference (VTC2023-Fall). Washington D.C., USA: IEEE Press, 2023: 1-7.
|
| 60 |
WANG Y P, TAN W D, HU X Q, et al. TZC: efficient inter-process communication for robotics middleware with partial serialization[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2019: 7805-7812.
|
| 61 |
SINGH R G, SCHOLLIERS C. WARDuino: a dynamic WebAssembly virtual machine for programming microcontrollers[C]//Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes. New York, USA: ACM Press, 2019: 27-36.
|
| 62 |
ZAESKE W, FRIEDRICH S, SCHUBERT T, et al. WebAssembly in avionics: decoupling software from hardware[C]//Proceedings of the IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). Washington D.C., USA: IEEE Press, 2023: 1-10.
|
| 63 |
|
| 64 |
ASHLEY-ROLLMAN M P, GOLDSTEIN S C, LEE P, et al. Meld: a declarative approach to programming ensembles[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2007: 2794-2800.
|
| 65 |
PINCIROLI C, BELTRAME G. Buzz: an extensible programming language for heterogeneous swarm robotics[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2016: 3794-3800.
|
| 66 |
CARROLL M, NAMJOSHI K S, SEGALL I. The resh programming language for multirobot orchestration[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2021: 4026-4032.
|
| 67 |
KOUTSOUBELIAS M, LALIS S. TeCoLa: a programming framework for dynamic and heterogeneous robotic teams[C]//Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. New York, USA: ACM Press, 2016: 115-124.
|
| 68 |
CHEN J L , CAO J N , CHENG Z Q , et al. ManiWare: an easy-to-use middleware for cooperative manipulator teams. IEEE Internet of Things Journal, 2023, 10 (16): 14212- 14225.
doi: 10.1109/JIOT.2023.3280313
|
| 69 |
GORNER M, HASCHKE R, RITTER H, et al. MoveIt! Task constructor for task-level motion planning[C]//Proceedings of the International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2019: 190-196.
|
| 70 |
PUJOL V C , DUSTDAR S . Fog robotics-understanding the research challenges. IEEE Internet Computing, 2021, 25 (5): 10- 17.
doi: 10.1109/MIC.2021.3060963
|
| 71 |
REKE M, PETER D, SCHULTE-TIGGES J, et al. A self-driving car architecture in ROS 2[C]//Proceedings of the International SAUPEC/RobMech/PRASA Conference. Washington D.C., USA: IEEE Press, 2020: 1-6.
|
| 72 |
LIU S R , JIANG X , GUAN N , et al. RTeX: an efficient and timing-predictable multithreaded executor for ROS 2. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43 (9): 2578- 2591.
doi: 10.1109/TCAD.2024.3380551
|
| 73 |
LUMPP F , FUMMI F , PATEL H D , et al. Enabling Kubernetes orchestration of mixed-criticality software for autonomous mobile robots. IEEE Transactions on Robotics, 2023, 40, 540- 553.
|
| 74 |
BARZEGARAN M, POP P. The FORA European training network on fog computing for robotics and industrial automation[C]//Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE). Washington D.C., USA: IEEE Press, 2023: 1-6.
|
| 75 |
SAITO Y, SATO F, AZUMI T, et al. ROSCH: real-time scheduling framework for ROS[C]//Proceedings of the IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). Washington D.C., USA: IEEE Press, 2018: 52-58.
|
| 76 |
SHAIK M S, STRUHAR V, BAKHSHI Z, et al. Enabling fog-based industrial robotics systems[C]//Proceedings of the 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Washington D.C., USA: IEEE Press, 2020: 61-68.
|
| 77 |
LUMPP F, FUMMI F, PATEL H D, et al. Containerization and orchestration of software for autonomous mobile robots: a case study of mixed-criticality tasks across edge-cloud computing platforms[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2022: 9708-9713.
|
| 78 |
WALKER M, FISCHER M, LECHLER A, et al. Evaluation of isolation and communication mechanisms for real-time containers[C]//Proceedings of the IEEE 32nd International Symposium on Industrial Electronics (ISIE). Washington D.C., USA: IEEE Press, 2023: 1-8.
|
| 79 |
ICHNOWSKI J, CHEN K Y, DHARMARAJAN K, et al. FogROS 2: an adaptive platform for cloud and fog robotics using ROS 2[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2023: 5493-5500.
|
| 80 |
HOQUE S, DE BRITO M S, WILLNER A, et al. Towards container orchestration in fog computing infrastructures[C]//Proceedings of the IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). Washington D.C., USA: IEEE Press, 2017: 294-299.
|
| 81 |
|
| 82 |
GROSHEV M , BALDONI G , COMINARDI L , et al. Edge robotics: are we ready? An experimental evaluation of current vision and future directions. Digital Communications and Networks, 2023, 9 (1): 166- 174.
doi: 10.1016/j.dcan.2022.04.032
|
| 83 |
MISHRA C , VERDONSCHOT R , HAGOORT P , et al. Real-time emotion generation in human-robot dialogue using large language models. Frontiers in Robotics and AI, 2023, 10, 1271610.
doi: 10.3389/frobt.2023.1271610
|
| 84 |
ISERMANN R . Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Berlin, Germany: Springer, 2006.
|
| 85 |
CRESTANI D , GODARY-DEJEAN K , LAPIERRE L . Enhancing fault tolerance of autonomous mobile robots. Robotics and Autonomous Systems, 2015, 68, 140- 155.
doi: 10.1016/j.robot.2014.12.015
|
| 86 |
GUO Z Y , YANG W J , LI M L , et al. ALLIANCE-ROS: a software framework on ROS for fault-tolerant and cooperative mobile robots. Chinese Journal of Electronics, 2018, 27 (3): 467- 475.
doi: 10.1049/cje.2018.03.001
|
| 87 |
LAUER M , AMY M , FABRE J C , et al. Resilient computing on ROS using adaptive fault tolerance. Journal of Software: Evolution and Process, 2018, 30 (3): 1917.
doi: 10.1002/smr.1917
|
| 88 |
YOU J , KIM H , LEE K . Fault-resilient robot operating system supporting rapid fault recovery with node replication. IEICE Transactions on Information and Systems, 2023, 106 (10): 1742- 1746.
|
| 89 |
梅宏, 曹东刚, 谢涛. 泛在操作系统: 面向人机物融合泛在计算的新蓝海. 中国科学院院刊, 2022, 37 (1): 30- 37.
|
|
MEI H , CAO D G , XIE T . Ubiquitous operating system: toward the blue ocean of human-cyber-physical ternary ubiquitous computing. Bulletin of Chinese Academy of Sciences, 2022, 37 (1): 30- 37.
|
| 90 |
陈海波, 贾宁, 钱梽杨. 面向2030的操作系统架构与演进思考. 中国计算机学会通讯, 2022, 18 (12): 65- 72.
|
|
CHEN H B , JIA N , QIAN Z Y . Opinions on the architecture and evolution of operating systems towards 2030. Communications of the CCF, 2022, 18 (12): 65- 72.
|