[1] 蹇诗婕, 刘岳, 姜波, 等. 基于聚类过采样和自动编码器的网络入侵检测方法[J]. 信息安全学报, 2023, 8(6): 121-134. JIAN S J, LIU Y, JIANG B, et al. Network intrusion detection using cluster oversampling and auto-encoder[J]. Journal of Cyber Security, 2023, 8(6): 121-134. (in Chinese) [2] 陈虹, 王瀚文, 金海波. 融合改进自编码器和残差网络的入侵检测模型[J]. 计算机工程, 2024, 50(2): 188-195. CHEN H, WANG H W, JIN H B. Intrusion detection model combining improved self-encoder and residual network[J]. Computer Engineering, 2024, 50(2): 188-195. (in Chinese) [3] 郝劭辰, 卫孜钻, 马垚, 等. 基于高效联邦学习算法的网络入侵检测模型[J]. 计算机应用, 2023, 43(4): 1169-1175. HAO S C, WEI Z Z, MA Y, et al. Network intrusion detection model based on efficient federated learning algorithm[J]. Journal of Computer Applications, 2023, 43(4): 1169-1175. (in Chinese) [4] YANG L, MOUBAYED A, SHAMI A. MTH-IDS: a multitiered hybrid intrusion detection system for Internet of Vehicles[J]. IEEE Internet of Things Journal, 2022, 9(1): 616-632. [5] SABA T, REHMAN A, SADAD T, et al. Anomaly-based intrusion detection system for IoT networks through deep learning model[J]. Computers and Electrical Engineering, 2022, 99: 107810. [6] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL].[2024-04-13]. https://arxiv.org/abs/1312.6199v4. [7] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL].[2024-04-13]. https://arxiv.org/abs/1412.6572v3. [8] WANG Z. Deep learning based intrusion detection with adversaries[J]. IEEE Access, 2018, 6: 38367-38384. [9] LIN Z L, SHI Y, XUE Z. IDSGAN: generative adversarial networks for attack generation against intrusion detection[C]//Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Germany: Springer International Publishing, 2022: 79-91. [10] SHARON Y, BEREND D, LIU Y, et al. TANTRA: timing-based adversarial network traffic reshaping attack[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 3225-3237. [11] HE K, KIM D D, ASGHAR M R. Adversarial machine learning for network intrusion detection systems: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 538-566. [12] PAWLICKI M, CHORA AS'G M, KOZIK R. Defending network intrusion detection systems against adversarial evasion attacks[J]. Future Generation Computer Systems, 2020, 110: 148-154. [13] YUAN X W, HAN S, HUANG W, et al. A simple framework to enhance the adversarial robustness of deep learning-based intrusion detection system[J]. Computers & Security, 2024, 137: 103644. [14] WANG N, CHEN Y M, HU Y, et al. MANDA: on adversarial example detection for network intrusion detection system[C]//Proceedings of the IEEE Conference on Computer Communications. Washington D.C., USA: IEEE Press, 2021: 1-10. [15] ZHANG R Q, LUO S L, PAN L M, et al. Generating adversarial examples via enhancing latent spatial features of benign traffic and preserving malicious functions[J]. Neurocomputing, 2022, 490: 413-430. [16] HASHEMI M J, CUSACK G, KELLER E. Towards evaluation of NIDSs in adversarial setting[C]//Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data Communication Networks. New York, USA: ACM Press, 2019: 14-21. [17] HAN D Q, WANG Z L, ZHONG Y, et al. Evaluating and improving adversarial robustness of machine learning-based network intrusion detectors[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8): 2632-2647. [18] YANG F, CHEN Z Y, GANGOPADHYAY A. Using randomness to improve robustness of tree-based models against evasion attacks[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(2): 969-982. [19] DING Y, ZHU G Q, CHEN D J, et al. Adversarial sample attack and defense method for encrypted traffic data[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18024-18039. [20] ATHALYE A, CARLINI N, WAGNER D. Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples[C]//Proceedings of International Conference on Machine Learning. New York, USA: ACM Press, 2018: 274-283. [21] APRUZZESE G, ANDREOLINI M, COLAJANNI M, et al. Hardening random forest cyber detectors against adversarial attacks[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4(4): 427-439. [22] KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[EB/OL].[2024-04-13]. https://arxiv. org/pdf/1607. 02533. [23] CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP). Washington D.C., USA: IEEE Press, 2017: 39-57. [24] FAWZI A, MOOSAVI-DEZFOOLI S M, FROSSARD P, et al. Empirical study of the topology and geometry of deep networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 3762-3770. [25] LIU F T, TING K M, ZHOU Z H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1): 1-39. [26] TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]//Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defense Applications. Washington D.C., USA: IEEE Press, 2009: 1-6. [27] SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]//Proceedings of the 4th International Conference on Information Systems Security and Privacy. Funchal, Portugal: Science and Technology Publications, 2018: 108-116. |