| 1 |
|
| 2 |
YANG H, DU K, ZHANG Y B, et al. Casino royale: a deep exploration of illegal online gambling[C]//Proceedings of the 35th Annual Computer Security Applications Conference. New York, USA: ACM Press, 2019: 500-513.
|
| 3 |
CHENG Y N, LIU Y L, WANG L M, et al. Evaluating the effectiveness of handling abusive domain names by Internet entities. Electronics, 2022, 11(8): 1172.
doi: 10.3390/electronics11081172
|
| 4 |
PECK J, NIE C, SIVAGURU R, et al. CharBot: a simple and effective method for evading DGA classifiers. IEEE Access, 2019, 7, 91759- 91771.
doi: 10.1109/ACCESS.2019.2927075
|
| 5 |
WANG Z, GUO Y. Neural networks based domain Name generation. Journal of Information Security and Applications, 2021, 61, 102948.
doi: 10.1016/j.jisa.2021.102948
|
| 6 |
ZHAI Y, YANG J, WANG Z X, et al. Cdga: a GAN-based controllable domain generation algorithm[C]//Proceedings of the IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). Washington D.C., USA: IEEE Press, 2022: 352-360.
|
| 7 |
袁辰, 钱丽萍, 张慧, 等. 基于生成对抗网络的恶意域名训练数据生成. 计算机应用研究, 2019, 36(5): 1540-1543, 1568.
|
|
YUAN C, QIAN L P, ZHANG H, et al. Generation of malicious domain training data based on generative adversarial network. Application Research of Computers, 2019, 36(5): 1540-1543, 1568.
|
| 8 |
邹可欣, 陈彦光, 时金桥, 等. 基于深度学习的仿冒域名生成工具. 电子技术应用, 2020, 46(7): 108- 112.
|
|
ZOU K X, CHEN Y G, SHI J Q, et al. Typosquatting domain name generator based on deep learning. Application of Electronic Technique, 2020, 46(7): 108- 112.
|
| 9 |
WU C B, FEI J L. An abnormal domain name generation method based on a character-level model[C]//Proceedings of the 2022 4th International Conference on Robotics, Intelligent Control and Artificial Intelligence. New York, USA: ACM Press, 2022: 804-810.
|
| 10 |
GONG B, NING Z H, ZHU Y, et al. Character-level domain name generation algorithm based on ED-GAN[C]//Proceedings of the 11th International Conference on Software and Computer Applications. New York, USA: ACM Press, 2022: 198-205.
|
| 11 |
NAKAMURA A, DOBASHI F. Proactive phishing sites detection[C]//Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. New York, USA: ACM Press, 2019: 443-448.
|
| 12 |
刘泽琨. 基于主动探测的钓鱼网站发现系统的设计与实现[D]. 北京: 北京邮电大学, 2022.
|
|
LIU Z K. Design and implementation of phishing website discovery system based on active detection[D]. Beijing: Beijing University of Posts and Telecommunications, 2022. (in Chinese)
|
| 13 |
CHENG Y N, CHAI T T, ZHANG Z X, et al. Detecting malicious domain names with abnormal WHOIS records using feature-based rules. The Computer Journal, 2022, 65(9): 2262- 2275.
doi: 10.1093/comjnl/bxab062
|
| 14 |
LIANG Y C, CHENG Y N, ZHANG Z X, et al. Illegal domain name generation algorithm based on character similarity of domain name structure. Applied Sciences, 2023, 13(6): 4061.
doi: 10.3390/app13064061
|
| 15 |
PENG K, LEUNG V C M, HUANG Q J. Clustering approach based on mini batch kmeans for intrusion detection system over big data. IEEE Access, 2018, 6, 11897- 11906.
doi: 10.1109/ACCESS.2018.2810267
|
| 16 |
|
| 17 |
|
| 18 |
AL-MATHAM R N, AL-KHALIFA H S. SynoExtractor: a novel pipeline for Arabic synonym extraction using Word2Vec word embeddings. Complexity, 2021(1): 6627434.
|
| 19 |
余子丞, 凌捷. 基于Transformer和多特征融合的DGA域名检测方法. 计算机工程与科学, 2023, 45(8): 1416- 1423.
|
|
YU Z C, LING J. A DGA domain name detection method based on Transformer and multi-feature fusion. Computer Engineering & Science, 2023, 45(8): 1416- 1423.
|
| 20 |
ZHANG X, CHENG H, FANG Y. A DGA domain name detection method based on Transformer. Computer Engineering & Science, 2023, 42(3): 411.
|
| 21 |
|
| 22 |
|
| 23 |
WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks: the state of the art and beyond. Acta Automatica Sinica, 2017, 43(3): 321- 332.
|
| 24 |
CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview. IEEE Signal Processing Magazine, 2018, 35(1): 53- 65.
doi: 10.1109/MSP.2017.2765202
|
| 25 |
HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL]. [2024-05-08]. https://arxiv.org/abs/1207.0580.
|
| 26 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: prevent NN from overfitting. Journal of Machine Learning Research, 2014, 15, 1929- 1958.
|
| 27 |
MERCIONI M A, HOLBAN S. A survey of distance metrics in clustering data mining techniques[C]//Proceedings of the 3rd International Conference on Graphics and Signal Processing. New York, USA: ACM Press, 2019: 1-8.
|
| 28 |
ZHANG Z, CHENG Y, WU X. Illegal domain name mining method based on domain name structure similarity: CN108712403A[P]. 2018-10-26.
|
| 29 |
GONG L Y, LI Z H, WANG H Y, et al. Overlay-based Android malware detection at market scales: systematically adapting to the new technological landscape. IEEE Transactions on Mobile Computing, 2022, 21(12): 4488- 4501.
doi: 10.1109/TMC.2021.3079433
|
| 30 |
GONG L Y, LIN H, LI Z H, et al. Systematically landing machine learning onto market-scale mobile malware detection. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(7): 1615- 1628.
|