Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (10): 250-257. doi: 10.19678/j.issn.1000-3428.0069504

• Graphics and Image Processing • Previous Articles     Next Articles

Highly Discriminative Image Copy-Move Forgery Detection

WANG Chao1, HUANG Zhiqiu1,*(), ZHANG Yushu1, YI Shuang2   

  1. 1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China
    2. Criminal Investigation School, Southwest University of Political Science and Law, Chongqing 401120, China
  • Received:2024-03-06 Revised:2024-05-08 Online:2025-10-15 Published:2024-08-13
  • Contact: HUANG Zhiqiu

高判别性的图像复制-粘贴篡改检测

王超1, 黄志球1,*(), 张玉书1, 易爽2   

  1. 1. 南京航空航天大学计算机科学与技术学院,江苏 南京 211106
    2. 西南政法大学刑事侦查学院,重庆 401120
  • 通讯作者: 黄志球
  • 基金资助:
    国家自然科学基金联合基金项目(U2241216)

Abstract:

Several discriminative problems exist in copy-move forgery detection, including the difficulty of using keypoints to cover smooth regions, lack of color descriptive capability in feature representations, and insufficient accuracy of feature matching. This study proposes a highly discriminative image copy-move forgery detection method. For keypoint extraction, an image is divided into different super-pixel regions according to texture, and the keypoints are adaptively extracted from such regions, where the keypoints uniformly cover the smooth regions. For feature representation, a quaternion-based feature description method is proposed that can accurately describe the color information of an image. For feature matching, a Reversed generalized 2 Nearest Neighbors (Rg2NN) matching algorithm is used to improve the matching accuracy of multiple keypoints. During post-processing, the detection results are obtained using a fast mean-residual normalized production correlation (NNPROD) algorithm. Experimental results demonstrate that the proposed algorithm achieves excellent accuracy across multiple benchmarks and is robust against common geometric and signaling attacks.

Key words: copy-move, forgery detection, super-pixel, color, discriminative

摘要:

针对复制-粘贴篡改检测的判别性问题,包括特征点难以覆盖图像平滑区域、特征表示不具备彩色图像描述能力以及特征匹配不够精确,给出一种高判别性的图像复制-粘贴篡改检测方法。在特征点提取环节,根据纹理程度将图像分成不同超像素区域,并在不同区域自适应地提取图像特征点,从而使特征点均匀地覆盖图像平滑区域。在特征表示环节,提出基于四元数的特征描述方法,以更好地描述图像的色彩信息。在特征匹配环节,使用一种新型的逆序广义2近邻(Rg2NN)匹配算法,提高多特征点的匹配精度。在后处理环节,使用快速去均值归一化积相关(NNPROD)算法进行相关性检查,得到检测结果。实验结果表明,所提方法在多个基准上实现了先进的综合检测精度,并且对常见的几何和信号攻击鲁棒。

关键词: 复制-粘贴, 篡改检测, 超像素, 颜色, 判别性