[1] FISCHLER M A, ELSCHLAGER R A. The representation and matching of pictorial structures[J]. IEEE Transactions on Computers, 1973, 100(1): 67-92. [2] 曾宝国, 尹文刚. 基于SIFT与SVM的应急救援图像检测方法研究[J]. 中国安全生产科学技术, 2020, 16(8): 186-192. ZENG B G, YIN W G. Study on image detection method of emergency rescue based on SIFT and SVM[J]. Journal of Safety Science and Technology, 2020, 16(8): 186-192. (in Chinese) [3] KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2004: 16-23. [4] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017: 7291-7299. [5] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2020: 5686-5696. [6] 龙辰志, 陈平, 李传坤. 融合全局-局部上下文信息的小目标多人姿态估计[J]. 计算机工程, 2024, 50(4): 342-349. LONG C Z, CHEN P, LI C K. Fusing global-local contextual information for small object multi-person pose estimation[J]. Computer Engineering, 2024, 50(4): 342-349. (in Chinese) [7] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[EB/OL].[2024-05-05]. https://arxiv.org/abs/1405.0312. [8] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2014: 3686-3693. [9] WADA K. Labelme: image polygonal annotation with Python[EB/OL].[2024-05-05].https://doi.org/10.5281/zenodo. [10] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2016: 779-788. [11] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018: 8759-8768. [12] JOCHER G. YOLOv8[EB/OL].[2024-05-05].https://github.com/ultralytics/ultralytics. [13] MA X, DAI X, BAI Y, et al. Rewrite the stars[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2024: 5694-5703. [14] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C.,USA:IEEE Press,2023: 1-5. [15] LIU W Z, LU H, FU H T, et al. Learning to upsample by learning to sample[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C.,USA:IEEE Press,2023: 6004-6009. [16] WANG C Y, YEH I H, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL].[2024-05-05].https://arxiv.org/abs/2402.13616. [17] JOCHER G. YOLOv5[EB/OL].[2024-05-05].https://github.com/ultralytics/yolov5. [18] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2020: 1577-1586. [19] 李松, 史涛, 井方科. 改进YOLOv8的道路损伤检测算法[J]. 计算机工程与应用, 2023, 59(23): 165-174. LI S, SHI T, JING F K. Improved road damage detection algorithm of YOLOv8[J]. Computer Engineering and Applications, 2023, 59(23): 165-174. (in Chinese) [20] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2020: 10778-10787. [21] 张利丰, 田莹. 改进YOLOv8的多尺度轻量型车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 129-137. ZHANG L F, TIAN Y. Improved YOLOv8 multi-scale and lightweight vehicle object detection algorithm[J]. Computer Engineering and Applications, 2024, 60(3): 129-137. (in Chinese) [22] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2017: 1800-1807. [23] GUO M H, LU C Z, HOU Q B, et al. SegNeXt: rethinking convolutional attention design for semantic segmentation[EB/OL].[2024-05-05].https://arxiv.org/abs/2209.08575. [24] WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C.,USA:IEEE Press,2020: 3007-3016. [25] LU H, LIU W Z, FU H T, et al. FADE: fusing the assets of decoder and encoder for task-agnostic upsampling[EB/OL].[2024-05-05]. https://arxiv.org/abs/2207.10392. [26] LU H, LIU W Z, YE Z X, et al. SAPA: similarity-aware point affiliation for feature upsampling[EB/OL].[2024-05-05].https://arxiv.org/abs/2209.12866. [27] NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[EB/OL].[2024-05-05]. https://arxiv.org/abs/1603.06937. [28] MAJI D, NAGORI S, MATHEW M, et al. YOLO-pose: enhancing YOLO for multi person pose estimation using object keypoint similarity loss[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D.C.,USA:IEEE Press,2022: 2636-2645. [29] CHENG B W, XIAO B, WANG J D, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2020: 5385-5394. [30] GENG Z G, SUN K, XIAO B, et al. Bottom-up human pose estimation via disentangled keypoint regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C.,USA:IEEE Press,2021: 14671-14681. |