[1] GUBBI J, BUYYA R, MARUSIC S, et al. Internet of Things (IoT): a vision, architectural elements, and future directions[J]. Future Generation Computer Systems, 2013, 29(7): 1645-1660. [2] ALHORAIBI L, ALGHAZZAWI D, ALHEBSHI R, et al. Physical layer authentication in wireless networks-based machine learning approaches[J]. Sensors (Basel), 2023, 23(4): 1814. [3] PAN F, PANG Z B, WEN H, et al. Threshold-free physical layer authentication based on machine learning for industrial wireless CPS[J]. IEEE Transactions on Industrial Informatics, 2019, 15(12): 6481-6491. [4] ZHANG J Q, RAJENDRAN S, SUN Z, et al. Physical layer security for the Internet of Things: authentication and key generation[J]. IEEE Wireless Communications, 2019, 26(5): 92-98. [5] GHOSE N, LAZOS L, LI M. SFIRE: secret-free-in-band trust establishment for COTS wireless devices[C]//Proceedings of the IEEE Conference on Computer Communications. Honolulu, USA: IEEE Press, 2018: 1529-1537. [6] WANG Q, PANG Z B, LIANG W, et al. Spatiotemporal gradient-based physical-layer authentication enhanced by CSI-to-image transformation for industrial mobile devices[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 4236-4245. [7] RAZA C A, ALSMADI M, IKKI S. Survey of identity-based attacks detection techniques in wireless networks using received signal strength[C]//Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). Quebec, Canada: IEEE Press, 2018: 1-6. [8] SHAN D, ZENG K, XIANG W D, et al. PHY-CRAM: physical layer challenge-response authentication mechanism for wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1817-1827. [9] XIA S D, TAO X F, LI N, et al. Multiple correlated attributes based physical layer authentication in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1673-1687. [10] 宋宇波, 陈冰, 郑天宇, 等. 基于混合特征指纹的无线设备身份识别方法[J]. 计算机研究与发展, 2021, 58(11):2374-2399. SONG Y B, CHEN B, ZHENG T Y, et al. Hybrid feature fingerprint-based wireless device identification[J]. Journal of Computer Research and Development, 2021, 58(11): 2374-2399. (in Chinese) [11] DEMIRBAS M, SONG Y. An RSSI-based scheme for sybil attack detection in wireless sensor networks[C]//Proceedings of the International Symposium on a World of Wireless, Mobile and Multimedia Networks. Niagara Falls, USA: IEEE Press, 2006: 564-570. [12] CHEN Y Y, YANG J, TRAPPE W, et al. Detecting and localizing identity-based attacks in wireless and sensor networks[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2418-2434. [13] XIE N, CHEN J J, HUANG L. Physical-layer authentication using multiple channel-based features[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2356-2366. [14] MAHMOOD A, AMAN W, IQBAL M O, et al. Channel impulse response-based distributed physical layer authentication[C]//Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring). Sydney, Australia: IEEE Press, 2017: 1-5. [15] LIU H B, WANG Y, LIU J, et al. Authenticating users through fine-grained channel information[J]. IEEE Transactions on Mobile Computing, 2018, 17(2): 251-264. [16] LI X L, HUANG K Z, WANG S Y, et al. A physical layer authentication mechanism for IoT devices[J]. China Communications, 2022, 19(5): 129-140. [17] ALI K, LIU A X, WANG W, et al. Keystroke recognition using WiFi signals[C]//Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. New York, USA: ACM, 2015: 90-102. [18] YANG Z, ZHOU Z M, LIU Y H. From RSSI to CSI: indoor localization via channel response[J]. ACM Computing Surveys, 2013, 46(2): 1-32. [19] 刘媛媛, 谢先明, 田宪辉, 等. 高效UKF相位解缠算法[J]. 遥感信息, 2022, 37(2):60-69. LIU Y Y, XIE X M, TIAN X H, et al. An efficient UKF phase unwrapping algorithm[J]. Remote Sensing Information, 2022, 37(2): 60-69. (in Chinese) [20] QUE Z, LIN C J. One-class SVM probabilistic outputs[J]. IEEE Transactions on Neural Networks and Learning Systems,2025, 36(4): 6244-6256. [21] 刘旭东, 杨绪兵. L1-OCSVM模型设计及其在林业目标检测中的应用[J]. 计算机工程, 2025, 51(7): 375-384. LIU X D, YANG X B. Design of L1-OCSVM model and its application in forestry object detection[J]. Computer Engineering, 2025, 51(7): 375-384. (in Chinese) [22] ZHUO Y W, ZHU H Z, XUE H, et al. Perceiving accurate CSI phases with commodity WiFi devices[C]//Proceedings of IEEE Conference on Computer Communications. Atlanta, USA: IEEE Press, 2017: 1-9. [23] HUA J Y, SUN H Y, SHEN Z Y, et al. Accurate and efficient wireless device fingerprinting using channel state information[C]//Proceedings of IEEE Conference on Computer Communications. Honolulu, USA: IEEE Press, 2018: 1700-1708. [24] YAN D W, YAN Y B, YANG P L, et al. Real-time identification of rogue WiFi connections in the wild[J]. IEEE Internet of Things Journal, 2023, 10(7): 6042-6058. [25] BARBARIOL T, SUSTO G A. TiWS-iForest: isolation forest in weakly supervised and tiny ML scenarios[J]. Information Sciences, 2022, 610: 126-143. [26] 余长宏, 许孔豪, 张泽, 等. 基于分割点改进孤立森林的网络入侵检测方法[J]. 计算机工程, 2024,50(6):148-156. YU C H, XU K H, ZHANG Z, et al. Improving network intrusion detection methods in lsolated forests based on split points[J]. Computer Engineering, 2024, 50(6): 148-156. (in Chinese) |